TEYOOE 31 AEKEMBPIO乏 1985

ГIA ONOY

A©IEPQMA:

YHonorizizz KAI MIKPEz EnIXEIPHIEEIE

SEIRU:
 TA HNEKTPONIKA
 SUPERMARKET THE IARQNIAE

EYP@TAÏko

EYMIOEIO TIA TEE NESZ TEXNONOTISE

ГN $2 P I \Sigma T E ~ T O ~ Q L ~ T H \Sigma ~ S I N C L A I R . . . ~$ KI EMAE MAZI！！

O I \triangle ANIKO Σ YNAYAミMO TIMH乏 KAI I $\Sigma X Y O \Sigma!!$

TEXNIKA
 XAPAKTHPIETIKA

－Muñun 128 K RAM－Processor 68008 Motorola（ 32 BIT Architecture）$\bullet 2 \times 100 \mathrm{~K}$ Microdrives－RGB output－TV output － 2 RS－ 232 C Kavá $\lambda_{1 a}$－ 2 Network ports（бu்vסєon 64 QL oє ठіктvo）• ROM cartridge Port 2 Joystic ports \bullet Memory exp．slot．

पYNATE乏 EПEKTAEEI乏

－Muñun غ̇ ω c 512 KB RAM－Floppy drives $\mu \dot{\chi}$ रिı каı $2 \times 1,6 \mathrm{MB} \bullet$ Hard Disk $10 \mathrm{MB} \bullet$ Modems－A／B к．а．

SOFTWARE TOOLS

 δ баркш்ৎ $\mu \varepsilon$ v $\dot{\alpha} \alpha$ Software tools олпшऽ үıа лара́бعıүиа：
－QL Assembler Kit • QL LISP
－QL Pascal－QL C．Compiler
－QL Forth－QL Appl．Development Utilities к．$\dot{\text { a }}$ ．

ЕФАРМОГЕЕ EKMETAヘMEYEESE

Evaç $\mu \varepsilon ү \dot{\alpha} \lambda о \varsigma$ apı $\theta \mu$ óc $\varepsilon \lambda \lambda \eta$ иıк $\dot{\omega} v$ кaı

－Тıиодо́үпоп－Оıкоиоцикоі Піиакеऽ
 －Iatoùv к．á．

MAZI ME KA＠E QL，TתPA KAI ETA EANHNIKA，DINONTAI \triangle IPPEAN TA EEHE ПРОГРАММАТА：
－EIIEEEPTAEIA乏 KEIMENQN
－DIAXEIPHEHE APXEIRN （DATA BASE）
－EПEEEPLAEIAE OIKONOMIK』N IINAK』N
－GRAPHICS（Ta кад̀̇tєpa tov घiסovg）

두드라

1983 ZX－81 1984 SPECTRUM 1985 QL

H iotopia enituxias ouvexizetaı

QL $\mu \varepsilon$
 $\mu 0 \mathrm{VITOP}$
87.000 87.000 8px．

THE "CASE" FOR THE FUTURE

Total IBM-PC compatibility lets you run all your custom and off-the-shelf IBM-PC programs as well as GRiD's full range of integrated

GRiD's user-installable ROM packs let you load software just by popping in a cartridge. These in a cartridge. These
ROMs can contain any software: IBM-PC, GRiD or your own.
Four ROM sockets Four ROM sockets
provide up to 512 K capacity.

Three screen options
available: $L C D$,

available: LCD,
Enhanced LCD
and Plasma.

RS232C, Centronics, External Bus, DIN Connector (for IBM-PC keyboard and 10-key keypad), access to IBM-PC expansion chassis.

A color (RGB) video-out

port lets you hook up GRiDCase to an external color monitor.

SYSTEMS TO GO

TECN M ARE

THE FUTURE IN HIGH-TECH
FILL-OUT THIS COUPON AND RETURN IT NAME:
COMPANY:
ADDRESS:
TEL.:
INTERESTING FOR \square GRID
TECH WARE
6 THERMOPILON STR. GREECE
15233 HALANDRI, TEL.: 6840021
TLX: 221809 GET GR.
digitized by greekrcm.gr

П4

ЕФЛФYАへO

 yid＂Oגouc＂

Empì̀zıa：Ektwp Xapa λ à μ mous Фwтoyoáẹŋon：Káoraç E λ su θ spákņ

KAOE MHNA

On line35
Monitor 36
 40
N．Проїóvta 52
$\mathrm{O}_{1} \ldots \mu \varepsilon \gamma \dot{\mathrm{a}} \lambda 01$ 68
Ayopá 70
A入入n E入入äठa 79
 91
Telex 112
世iӨupoi 120
Bı $ß \lambda$ ıопароиoiaon 236
Atautñoeic yia Oגouc 237
Ayүह入isc， 238
Osnyóc Ayopás 239
Tov emó μ evo μ ทiva 242
MONIME乏 $\mathbf{~ T H A E \Sigma ~}$
CASE STUDY：
SEIRU：To supermarket nou épxetal anoто μ ह̀ λ 入ov132
SOFTWARE REVIEW：
FINMAN：H véa yeviá tou qumopıkoúsoftware211
AEITOYPFIKA इYZTHMATA：217
FAQIEA ПPOLPAMMATIEMOY：226

EDITOR IN CHIEF：Fotis Karatzias，EDITORS：K．Mellos，T．Tsirimokos，G．Dafotis，D．Tsouroplis，C．Chaldeopoulos，T．Kafantaris，A．Tsogalis，D．Zervos，V．Georgis，S． Sgourovasilakis，T．Livanidis，S．Simopoulos，A．Nikoliaidis，J．Dakaris，Th．Boletis，CONTRIBUTING EDITORS：E．Charalampus，M．Vartanian，F．Georgiadis，C．Kyriakos，J．Petroglou，G． Polyzoidis，A．Kyrlidis，NORTH GREECE EDITORS：Stratos Simopoulos，OVERSEAS EDITORS：USA：S．Peristeris，CANADA：P．Korogiannakis，U．K．B．Konstantinou，BULGARIA： P．Zafeiropoulos，FRANCE：D．Vlontakis，SWEEDEN：S．Votouroglou，JAPAN：C．Laurell，ART DIRECTOR：Joanna Malesi，COVER：E．Charalampous，PHOTOGRAPHY：K． Elefterakis．

PEПOPTAZ

Euvívteuén he tov к．T冖iouમákn， катабкะvaoтi் тои PC compatible «ПYOIA＂ 115
 Eирштаїкó इupmósio yıa tic vies texvoגoyizc．
 Mepoç I：H ßıяипхаиıкй поо́к入non ．．． 198

TEST

Barcovision II／Barcodata 3 ．．．．．．．．．．．．．．． 145
Commodore Amiga ．．．．．．．．．．．．．．．．．．．．． 154
Systime 300 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 222

OEMATA

ПРОГРАММА АӨНNA：Еva по $\lambda \dot{v}$
122

EEट』：Пйc yeфupüvetal to texvo
xáoua128
Computer кaı ठі்்ттйa：To то $\lambda \mu \eta \rho \dot{~}$ §єкіипиа 204

AФIEP』MA

 E．O．K．

176
ПРОГРАММАТА
APPLE：Anuroupyia nuspò⿱丷天甲으 232TI PROFESSIONAL：Прођүрациа үIव234

1767

ЕҮРЯПН 2000

H тexvo入ovเหи́ поóx $\lambda_{n o n}$

154

 （The newspaper），Computing（The magazine），Infomatics，Datalink，VNU Business Publications．

PUBLISHED BY：Compupress Ltd，PUBLISHER：Nikos Manousos，ASSISTANT PUBLISHER：Vangelis Papalios，ADVERTISING／PUBLIC RELATIONS MANAGER：Agapi Lalioti，ADVERTISING SALES：V．Papalios，M．Daskalakis，A．Kanavos，CIRCULATION：D．Georgiou，NORTHERN OFFICES：S．Simopoulos，Chalkeon 29, tel．： 283663 ， Thessaloniki，TELEPHONES： $3644685-3644686-3601761$ ，SUBSCRIPTIONS：EUROPE 3.200 Dr．，CYPRUS 3.000 Dr．，USA 3.500 Dr．，EXCLUSIVE RIGHTS FOR GREECE： Persònal Computer World，Computing（The newspaper），Computing（The magazine），Infomatics，Datalink，VNU Business Publications．

Av δ हvonutegoete qutoto triéquvo osv ớS．．．evסiacpépouv Ta computers！

＾oimóv，yia va ßá入oune ta пра́үиата ơtך Өغ́on тоuc．
 computer；
 tnऽ ayopáৎ，óm $\omega \varsigma$ AMSTRAD， BBC，COMMODORE， ELECTRON，QL，SPECTRUM то па́тє бпіть бац каı．．． $\Psi a ́ \chi v \varepsilon \sigma \theta \varepsilon!$
Σ to ORANGE COMPUTER θa ßргітє то HOME пои Өغ́лعтє каı $Ө$ а єкпаıбєитєітє $\triangle \Omega$ PEAN！ Ако́ $\mu \mathrm{a}$ ，то тпле́ф $\omega \mathrm{vo} \mu \mathrm{a}$ ¢ عivaı пávta
 Тغ́入оৎ $\mu \pi о р о и ́ \mu \varepsilon$ va бая $п \rho о \mu \eta Ө \varepsilon บ ́ \sigma о и \mu \varepsilon \mu \varepsilon$ SOFTWARE каı

 бเєіخоицє ката́入оүо．

BUSINNES uполоүIOTغ் ORANGE COMPUTERS

 APRICOT，поu кa入úrtouv ह́va $\mu \varepsilon ү$ үá入o фáбца $\mu \eta$ хаvоүрафıкш́v avaүкш́v． Гia APRICOT λ limóv（aпó to при́to
 ．．．ORANGE COMPUTER！
A入入á kaı yıa ò̀ous tous BUSINNES uா๐入оүıбદ்த па́入ı ORANGE COMPUTER！

H＾EKTPONIKOI YПONOTIETE ПРОГРАММАТА ЕФАРМОГЛN

ПРОЕФОРА XPI亡TOYГENNRN

AMSTRAD 464	（ μ оvóxp ${ }^{\text {a }}$ ）	：	59.500
＂	（غ̇үхр ${ }^{\text {（ }}$		89.500
AMSTRAD 664	（ μ оvóxp $\mu^{\text {\％}}$ ）		78.500
＂			109.500
AMSTRAD 6128			94.500
＂	（غ̇үхрюно）		124.500

Abstract

SPECTRUM 48K－JOYSTICK－INTERFACE 28.000

SPECTRUM PLUS－JOYSTICK－INTERFACE 37.000

QL－EAMHNIKO SET－MONITOR 89.500

6^{-}onous

MICROPOLIS

ミtoupvápa 9- tף λ. 3633357-3640243

VICTOR 9000

－Eva aou ßißaoto oúotqua yıa óoous yvwpi弓ouv．Me tov 8088 ота 5 MHz oтávtapvt $\mu \mathrm{v} \mathfrak{j} \mu \eta$ RAM： 256

 CENTRONICS．$\triangle u v a t o ́ t \eta T a ~ \sigma к \lambda \eta-~$ poú ठíбкоu túmou WINCHESTER TwV 10 ń 30 MB ．HIGH RESOLU－ TION μ оvохрюнıки́ oӨóvn，ঠıaкрı－ tıко́tทtas 800×400 PIXELS．＇Eva проїóv $\mu \varepsilon$ по入入غ́ц ठuvaто́тŋтєऽ．

VICTOR VICKI

Mıa μ ккри́ $\sigma \varepsilon \mu \varepsilon ́ \gamma \varepsilon Ө \circ \varsigma ~ a \lambda \lambda a ́ ~ \mu \varepsilon \gamma$ व́ $\lambda \eta$ бє ठuvaто́тŋтєऽ λ úoŋ．Форпто́ $\mu \varepsilon$ Tov 8086 ота 5 MHz ，проочع́ре। 256 KB RAM кaı ठúo ठıбкє́ттеऽ x $\omega \rho \eta$ тіко́тптац $1.2 \mathrm{MB} \eta$ ка́ $\theta \varepsilon \mu$ іа．
 крітіко́ттта 800×400 ．То V9000 пáعı паvтоú үıati દ́үıvદ VICKI．

VICTOR VPC

Mia пiñ́p $\sigma \varepsilon ı \rho a ́ ~ \sigma u \mu \beta a t \omega ் v ~ \mu \varepsilon ~ T \eta v ~$ пєіра $7 \mathrm{M} \varsigma$ VICTOR．INTEL 8088 वта $4,77 \mathrm{MHz}$ kaı 256 KB RAM oráv－

 Kat okגпро́s ঠі́коs túmou WIN－ CHESTER Twv 15 kaı 30 MB ．
To VICTOR VPC пєрілa $\mu \beta$ áv ε ו ó λa та характпрıотıка́ тךऽ бицßато́тп－
 kn SOFTWARE．

VICTOR VI

Mia סıпגń anávтnon ThS VICTOR

 проб甲в́реו тпр оицßато́тпта тои otávtapvt tis ayopás（360 KB FORMAT）a入入á кaı TПv aveாтuүцغ́－ v η TEXvo ${ }^{2}$ оyia Tns VICTOR（1．2 MB FORMAT）．
Ме тоv 8088 каı ठıбкв́ттєऽ $\times \omega \rho \eta$ тı－ ко́тŋtas 360 KB кaı 1，2 MB avá－
 ع入єழávтivn $\mu v \eta \dot{\mu} \mu$ T ω v 256 KB RAM
 MB！！！
Δ uvatótпта окגпрои́ ס̇iokou túmou WINCHESTER T $\omega \vee 10$ ท́ 20 ท́ aкó $\mu \eta$ kaı 30 MB ．
Δ úo Өúpes RS－232 kaı μ ía CEN－ TRONICS．
Movoxp $\omega \mu$ atıкń oӨóv 800×400 б ε VICTOR MODE．＇Eva $\mu \eta x a ́ v \eta \mu a \mu \varepsilon$
 үра $\mu \mu$ а́т ωv ．

EKTYПRTE

 mтоuv onoıavठ́ウ்поте avd̆ykn．
 LETTER QUALITY．
DP－80，DP－100，DP－130，DP－150，DP－160，DP－80LQDP－100

KAPTEE KAI．．．ПO

SOFTWARE

HX．ӨEOAOEHE ABEE סivé onuavtıkd To napóv ка

FX－20

－ 8088 8MHZ
－Socket yia 8087
－ 256 KB RAM

－ －
－Kápta tomıкоú ठıктu̇ou LAN
－ 2 RS－232， 1 RS－422

－Пגпктродо́үı $\mu \varepsilon 109$ плйктра！！ عוठıкó yıa wordprocessing．
－＾हוтоируıкá ouđтinuata
－CP／M－86，CCP／M，MS／DOS
－「入ف்ooa BASIC
－Wordprocessor

420.000 ठрх．

ЕФАРМОГЕЕ：＾ОГІГТІКН，АПОӨНКН
ПЕЛАТЕГ－ПРОМНӨЕҮTE
TIMO＾OTIA，\triangle ．NIANIKHE
MIIOOLOEIA
NAYTIAIAKA
ミENO \triangle OXEIA
IATPEIA
KAI ПO＾ITIKOI MHXANIKOI

АПОКАЕІГТІКОІ АNTIПPO乏ЛПOI INFOTEC

＾．इYГГРОY 371，ТН＾．： 9429444
AXAPN Ω N 10，TH＾．： 5231770 － 5233 128－5241 043

ТРОФО ОТІКО

¿YNEXOY П ПAPOXH乏

n оגокגnp由цรvn גuon ота проВ пината трофобобוas $^{\text {по }}$

U．P．S I EXYOE 1550 W

IEXYE EEOAOY
 TIMH U．P．S

100	W	105.000	0 бpx
250	W	137.500	0 бpx
500	W	230.000	0 ठpx
750	W	327.000	0 ठpx
1000	W	435.000	0 8px
1500	W	638.000	0 \％p
2000	W	825.000	0 \％p

XPONOE NEITOYPIIAE META THN AIAKO ПH THE TAइHE هIKTYOY： 15 min （ \ddot{n} нعYa入utep katoniv napayvedias）．
EIAOE EEOAOY：nuirovoeiōns 1% парарор甲шо TAEH EEOAOY： $220 \mathrm{~V} \pm 3 \%$
ミYXNOTHTA．EミOAOY： $50 \mathrm{~Hz} \pm 0,0001 \%$（oठ̃nync не криота入іко raגaviштn）．
TAइH EIEOAOY：180－260V
XPONOE METARQГHE AMO DIKTYO EE U．P．S：
 dubbou xwpis ouvinplion
ENAEIKTIKA ME AKOY乏TIKH KAI OHTIKH EN
 ωv ，raons $\varepsilon \xi$ об́ou xapnגотєpns ano 210 V ，taon
 rou U．P．S
DIGITAL Boגтонєтpo $\mu \varepsilon 3$ digits，nou $\mu \varepsilon$ тра： raon $\varepsilon \xi$ обои U．P．S каı raon $\mu n a r a \rho ı \omega v . ~$

EXPAND TO THE PC UNIVERSE PC.MASTEP

RUBY CRYSTAL LASER

AUTOCAD

join the Club！

Ká $\theta є$ ка́тохоऽ Commodore μ порєi va
 Commodore Club of Greece каı va апо入аи்бєı тєра́бтıа плєоvєктウ்ната， єико入ієऽ каı ঠıкаıயّната，пои аъıопоıйь tov ка入йтєро Computer бтоv ко̇бцо

Kגеıסi mou avoiveı סıäm入ata tis móptes tou
Club uாó tףv aıviסa tns MEMOX ABEEH

eivaı

η єYyúnó

Naı，аиті் η уvшоті் баऽ «ка்рта»，пои ouvoঠєúєı кáӨє ayopá Commodore єyyunuévou

тп Memox eivaı η ноvaঠıкウ் проӥпо́ $\theta \in \sigma \eta$

$$
\text { yıa va yivete } \mu \text { éios tou }
$$

commodore

of Greece

AUTHORISED MEMBER

autウ̇s tクS tєpáatıas opyávwons nou

yıa tov Commodore mou éxete tПV ка́ $\overline{\text { Tп }}$ MEへOYミ

mou Síveı oe oas kaı tov Commodore aگia mou סev גウ̇yeı ПOTE！Kaı va тı

1）\triangle YNATOTHTE－EYKOAIE

 unxavijuara．
2）$Е К П А І \triangle E Y \Sigma H$－ANAПTY三H

 －Opyavlujéva ofuivápıa oe C－64，128，BASIC，Machine Language Unix，

3）KOINתNIKOTHTA－ЧYXAIתIIA－MICROSHOPPING
－Computique：stickers，Posters，Tshirts，урафıкウ் ù৯ך，а६єбováp，ипоифáv каı фибıка̀ Eproms，S／W，avaגஸ்бıца．
－Computeria：yıa avaчuктıкà каı snacks iпv $\dot{\omega} \rho a$ пои єруá̧єбтє．
－Commodore Computer Camp－Etrílos xopós Commodore．
 аутіпробш̈поия
4）MONA IIKOTHTA
 Commodore Computer Shows（XIATON）• AMIGAS • Пpoonnè̉aã atךv Commodore International • E $\xi \in ı \delta ı к є \cup \mu \dot{\text { èvo } П є p ı o \delta ı к o ̀!~}$

Пообконі广оvтаऽ тПv єyvúnoŋ TクS yıa tov Commodore mou éxete єпібпиа ауорáoєı，апокта́тє аито́ $\mu а т а ~$ tףv ка́ןта MEへOY इ

mou Siveı oe oas kaı tov Commodore aछia mou $\delta \in v$ 入ウ̇veı ПOTE！Kaı va тı пєคıлПптіка́ пробфє́ $\rho \in I \quad \sigma \in:$

1）\triangle YNATOTHTE－EYKOAIE

 unxavijuara．
2）$Е К П А I \triangle E Y \Sigma H$－ANAПTYЕH

 －Opyavulueva ofuivapia oe C－64，128，BASIC，Machine Language Unix， MS－DOS yıa прохwpпиėvous кaı apxapious • Enayyêuatiкós

3）KOINתNIKOTHTA－ЧYXAISIIA－MICROSHOPPING
－Computique：stickers，Posters，Tshirts，урафıкウ் ù৯ך，а६єбováp，ипоифa்v

－Computeria：yıa avaчuктıкà каı snacks iпv $\dot{\omega} \rho a$ пои єруá̧єотє．
－Commodore Computer Camp－Etijoıos xopós Commodore．
 аутіпробш்поия
4）MONA IIKOTHTA
 Commodore Computer Shows（XIATON）• AMIGAS • Пpoonnè̇aã otךv

Commodore Club of GREECE

－＇Evapぞ Aeıtoupyias： 25 Maptiou 1986

 єyYünaクラ MEMOX xшрі今 пєрıорıбнó．
－$\Sigma u v \delta \rho o \mu \dot{\eta}: 500$ б ρ ．unviaiws．
－Eyypaфе́s：AӨHNA，Апо் 1 Фєßpouapiou 1986 ота ypaфєia tins MEMOX CRAFT Өétıסos 10 \＆ Міхалакопой\ои，тпА： 7238958. OEइミA＾ONIKH：Апо́ 15 Фєßpouapiou 1986 Baб． Нраклєiou 24， 546 24，тпл：（031） 229595. ヘОІПН Е＾МААА：Апо் 1 Maptiou 1986 бтоиs

Ta пакéta «OPIZONTEE», n véa oeıpá проурациа̇төv tns COMPUTER LOGIC, kataokeuáotnkav $\mu \varepsilon$ tnv пıo μ иoviépva
 yia to SOFTWARE.
Ta пакغ́ta «OPIZONTE Néa Texvo ${ }^{\text {oy }}$ yia, Néa Exeठiaon, Nées I İées. ¿ta пакغ́ta "OPIZONTE n n COMPUTER LOGIC

 anaoxóגnon oto SOFTWARE Yia
 Мıкроӥполоүıотغ́s.
¿ta пакéta "OPIZONTE каı характпрıотıка пршто́типа каı пршто́үvตра yıa tnv єпохń $\mu \mathrm{as}$, оє проура́циата

Мікроӥподоуıтє̇́s
Ta пакغ́ta "OPIZONTE opizovtes otnv texvohoyia tou SOFTWARE oinv E入入áסa.

H^EKTPONIKOI YПO^OГIZTE乏

H KATAMHNOTEPH AПANTHEH ETHN OПOIAАНПОTE AПAITHEY

OLYMPIC DAIA

इYETHMATA MHXANOPTANSEHE

EILARQГEL \& ANTIMPOEQ

IBS PC T α PC $\mu \varepsilon \tau \eta \mu \varepsilon ̇ \gamma ו \sigma \tau \eta ~ \sigma \nu \mu \beta \alpha \tau o ̀ \tau \eta \tau \alpha ~ I B M ~$ $\sigma \varepsilon$ software kol hardware！

EIAIKH ПРОЕФОРА：

IBS PC $\mu \varepsilon$
Hard Disk 20 MB，
 єктипமтй 160 cps． Проура́циата「eviкn̆s＾оуıбтікท̆s， Tıиолоупопs， Апо日п̀кпs， Пелатผ⿱⿱亠䒑日， каı ठ ω peáv єкпаібєиоך от $\varepsilon \lambda \varepsilon \chi \dot{\omega}$ ．

 LOTUS 1－2－3，LOTUS SYMPHONY，TOP VIEW，FLIGHT SIMULATOR к．a．
 PASCAL，COBOL，FORTRAN，RPG，C к．$\dot{\text { a．}}$

TEXNIKA XAPAKTHPIETIKA	IBS PC 2000	IBS AT 7000
CPU： RAM： ПEPIФEPEIAKH MNHMH：	8088 INTEL 4.77 MHz 64 K．$\varepsilon п \varepsilon к т \varepsilon і v \varepsilon т а ı ~ \mu \varepsilon ̇ х р і ~ т а ~ 640 ~ K . ~$ Eva ท̀ ठùo disk drives（ 360 K ） Hard disk（ 10 غं $\omega \varsigma ~ 200$ MB）	80286 INTEL 8 MHz（غ்فৎ 16 т трриатıка́） 1 ह்فऽ 16 MB Eva ที ठúo disk drives（1．2 MB） Hard disk（ $20,32,80 \mathrm{MB}$ ）．

MELOTEISN 2，MYPROE AOHNSN（IEOREIO） 11527 AOHNA THA．7778493－5 TELEX： 210546 CDCA

Authorised Distributor
Authorized Dealer

Epson
Printers DATASOUTH Printers Authorized Dealer

SANYO Monitors

xp\＆ááకعот\＆monitor；

 олоклпрю $\omega \mu \dot{v} \eta$ үка́ $\mu \mathrm{a}$ ．
 عuкрiveıa кaı $\mu \varepsilon$ т η Үv поıоúv ıठ̄avıкá tov uпо入оүוбтń oas．
Δ віт каı ठıa入غ́छ゙тє то monitor поu oas taı－
 avтіпроошпвias t ωv Sanyo monitors．

o Commodore

Tẃpa

 ayopá tou عívaı $\varepsilon \Pi \varepsilon ́ v \delta u o \eta$ ．
 $\kappa \omega ́ v:$ disc drive，каఠєtóф $\omega \mathrm{vo}$ ，monitor，printer，printer plotter， joysticks，modem yıa тך入 пол入á ако́ца hardware．

 yoúv tautóxpova 8μ ovád $\varepsilon \varsigma ~ \mu \varepsilon$ ह́va disc drive kaı ε ह́va printer бє фро⿱亠тібти́ріа－бхолві́а к．л．п．

 Ако́ца：

 סívetaı ε үyúnon yıa 1 xpóvo．Kaı uпápx\＆ı то $\mu \varepsilon$ үа入út $\varepsilon \rho \circ$
 проош́поис．
Kı ако́ца：
＊O Commodore 64 парацह́veı о ка入útعро̧ home computer

ANתNYMH BIOMHXANIKH EMПOPIKH ETAIPIA H \wedge EKTPONIK Ω

MEMOX ABEEH
Bag．इoфíac 82， 11528 AӨHNA Tn入． 7788711,77128007712713 TLX． 222680 MEMX GR Bag．Hpak 1 हíou 24， 54624 ӨE $2 / \mathrm{NIKH} \mathrm{T} \eta \lambda$ ．（031） 229595

ГN』PIETE TO QL THE SINCLAIR．．． KI EMAE MAZI！！

TEXNIKA
 XAPAKTHPIETIKA

－Muñ $\mu \eta 128$ K RAM • Processor 68008 Motorola（32 BIT Architecture） $2 \times 100 \mathrm{~K}$ Microdrives－RGB output－TV output － 2 RS－ 232 C Kavȧ $\lambda_{ı}$－ 2 Network ports（бúvסєon 64 QL oє ठіктиo）－ROM cartridge Port 2 Joystic ports \bullet Memory exp．slot．

पYNATE E EIEKTAEEI乏

－Mvñun غ̇ $\omega \varsigma 512$ KB RAM－Floppy
 $10 \mathrm{MB} \bullet$ Modems $\bullet \mathrm{A} / \mathrm{B}$ к．а．

SOFTWARE TOOLS

 ठıаркш்¢ $\mu \varepsilon$ v $\dot{\alpha} \alpha$ Software tools опшс үıа пара́бвıүиа：
－QL Assembler Kit • QL LISP －QL Pascal－QL C．Compiler －QL Forth－QL Appl．Development Utilities к．$\dot{\text { a }}$ ．

ЕФАРМОГЕЕ

 EKMETAMNEYEEת乏Evac $\mu \varepsilon ү \dot{\alpha} \lambda о \varsigma ~ a p ı \theta \mu o ́ s ~ \varepsilon \lambda \lambda \eta v i к \dot{\omega} v ~ к а ı ~$

 －Грациа́тıа／Eпıтаує̇ऽ • Video Club －latpúv к．á．

MAZI ME KA＠E QL，TתPA KAI

 ETA EANHNIKA，DINONTAI $\triangle \Omega P E A N$ TA EEHE ПРОГРАММАТА：－EПEEEPTAEIA乏 KEIMEN』N
－पIAXEIPHEHE APXEI Ω N （DATA BASE）
－EIEEEPTAEIAz OIKONOMIK』N IINAK』N
－GRAPHICS（Ta ка入̀̇тєpa tov sibovg）

 1983 2X－81 1984 SPECTRUM 1985 QL

H iotopia enıtuxias ouvexizeraı

$$
\begin{aligned}
& 1 \cos { }^{0} \\
& \text { AMSTRAD } \\
& \text { SINCLAIR }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 7. } 4118736
\end{aligned}
$$

jda rá vėa hoviéta oris radurepes tifies Toú Metpáa (kai ths AAnivas)
kai μ é triv unootripisn This...

In lequoikind

ГIA TOY乏 KATOXOYミ

Spectrum

ПOY OE＾OYN KATI
EEXRPIгTO
 EE ГАЛЕミA MHXANHE MOY \triangle INOYN ITON

EKDOTIKOE OPTANIEMOE COMPUPRESS

World Class Quality

Diskettes

DIDAK

Lifetime Guaranteed

Av кai A프IRMATIKA ПРЛТЕЕ！

－Exouv по入ú 入оүıкє́я тıи̌̌я

АПОKへEIETIKOI EIइAГЛГEI乏：

MRPAÏTHI－ AAEKAPH $_{\text {A．E．}}$

ETAIPIA TEXNIKתN इYMBOYA

Ta PLDT oas npotzívouv to каત̀útepo סఱ́po yıa oas

mileropeint soa．
PLDT－ $1+$ гOASMOY \＆£OYATANH 16，EEAPXEIA，AӨHNA，THA．： 3640.541
PLロT－｜ӨEMIETOKAEOYミ 23－25，AӨHNA，THA．： 3621.645
PLロT－2 KOYNTOYPISTOY 94，חEIPAIAE，THA．： 4119.818

evóracpépeode yıa Computers; in yiveode "xìila roquátia"

H ATKO COMPUTER SYSTEMS EToifaoe yia oas 5 o入ok njpous opópous anok λ elotiká pe COMPUTERS Printers, Ploters kar חpoypáyuata. E ate λ omov oe pas va oas §evaynooupe oto 8aunaoto kóguo tav H Yno入oyiotav kai av 8èste va oas Bononooupe va Siahejste auto nou oas egunnperei kadútepa.

H ELTRONICS E．П．E．

 CAD／CAM／CAE，otnv：

－BIOMHXANIA
 －EKПAIDEYEH
 －EPEYNA－TEXNOへOTIA

АПОКАЕІІТІКОГ АNTIПРОГЛПО乏 TOY OIKOY：

Tektronix

ELTRONICS E．П．E．
ODO乏 AЛЛПЕКНЕ 2 －KO＾ЛNAKI 10675 A＠HNA－TH＾．：7249511－15－TELEX 216589

Túpa CAD／CAM otqv E\גáठa！！

－CAD／CAM $\triangle Y O$ KAI TPI ΩN IIAETAEEQN
－NUMERICAL CONTROL（N．C．）ΣE ПOIKIへIA EPГAへEIOMHXAN ΩN

－APXITEKTONIKE EФAPMOГEइ

 бє ко́бтоऽ праунатіка́ пробוто́．
 тко́，поо́ураниа，пои пєрı\aرßávєı．

M．■नロ

aє ougtínata Cromemco

Aүапптоі avaүvஸ்oteऽ,

 uпо入оүібтம்v.

 оıүоиріа бє ка̇поіа катпүоріа!

 η Іठठเштіки் прютоßоиגіа.

О Екӧоття

กnoกilior

1

 $\mu \nu \eta ŋ \mu$ RAM 640 Kbytes $\triangle 1 a \theta \varepsilon \tau \varepsilon 1$ हva floppy disk drive toju 360 Kbytes, eva hard disk drive Twi 10 Mbytes,

 סúo disk drives t t 0.360 Kbytes.

(2)

H Marathon Data Systems (8141422), nou عivai \&iठikñ oia

 हival Evac ouvסvaojóc hardware kal software, nou

- Evac пivakac ka èva po入üß। чnழюmoinaņ (digifizing pen)

To Micromanager, utiooxetat va $\delta \dot{\omega}$ oहt λ úon os óoous

 opıそóvtiouc kai kä̈धrouc oठ́nyoüc. To Micromanager, zivaı

 SOFTWARE A.E. $(9025645$ - 9).

Me tnu ovouacia Xavier XCS 2250, n eraipia
 multi-user oúotnua FX 40 тhৎ Future Computers. Ta kúpıa

 20 Mbytes, גहוтoup үiкo ovornúa Concurrent CP/M kai טாootnpiEn $\mu \varepsilon x \rho 111$ ora $\mu \omega \dot{\mu}$ epyaoias (Workstation 2000),
 avaṛtu̇દઘ η DATAMEDIA

5

Evac aciöגoyoc popntóc umo入o viatns，o Encore anc
 סiaotaogı tov घivar $23 \times 33 \times 12 \mathrm{~cm}$ ．Evówhatwuvi obóvn

 drives twu 360 Kbytes．Euvósüetar ano to 入eitovoyikó

 Tov Encore $\theta \alpha$ tov $\beta \rho$ eite otnu TECHNOMASTER ERE （4115842）oтnv тій т т 340.000 סop．

6

To Microbrain（3607733）ह $\varphi \varepsilon \rho \varepsilon$ ta vé Remote Control

 joysticks दenepvà ta 80 m kai n tiun tovi kvüivetal yupo отic $16.000-17.000$ हिp．

7

H A MIKPOKOMПIOYTEP A $Q H N \Omega N$（6448263）

 15,20 kai 25 ．O1 MSP 20 kar 25 סia日̇̇̇ouv buffer twu 8 Kbytes kai парá $\lambda \lambda n \lambda$ خo interface tünou centronics．H

 otindec yId tov MSP 20 kal 136 otiǹ
 Epson modes．H turi tovc，apxiをeı arọ tic 89.500 （MSP 10） kai φ Өävé orlç 169.000 （MSPP 25）．

8

Eto computer shop Eapavtapiठnc（ 3634480 ）Bpinkaue to veo interface Sound Buggy，to onoio цетатрغтधi той Commodore 64 ：σ synthesizer：
To Sound Buggy ouvodeverai ano eva clavier nou

 Tou Commodore．To interface eival हфobiao μ हैט $\mu \varepsilon$ ．
 tou n̄xou kai kootǐ̌uv 28.000

STAR STX－80

O A日ópußos
－ 60 характп்реऽ／
$\delta \in u т \in \rho о ் \lambda \in ா т$（CPS）
－Movaסıкй єuкріvєıa ypaфıкüv парабта́бєшv
－Өєриıко் харті
－İavikós yıa μ ıкре́s єктuாய்бєIS
－Пoגu் oıкоvouıкȯs

STAR SG－10
 aпóठoon

O véos SUPER－GEMINI－10
пє́pa апо் та
плєоvєктท்цата тои прокато́хои тои （тахи̇тŋта 120 cps， трофобобіа хартіои் $\mu \epsilon$ т $\rho \stackrel{\beta \text { й каı тра́кто } \rho а \text { ，}}{\text { ка }}$ үрафікє́ऽ парабта̇бєıऽ
1920 опцєiwv）סıaӨ̇̇тєı：
－Поьотпта үрафர்s NEAR LETTER QUALITY（NLQ）
－$\Delta u v a t o ́ t \eta t a ~$ бицßıßабто́тптая $\mu \in$ опоוобท்потє COMPUTER
－ 240 проура μ атıґо̇ μ єvous （DOWN LOADABLE） характп்рєऽ
－E§ШTєpıкои̇S
ঠוaкöntes（DIP SWITCHES）

STAR SG－15
O ОІкоVО

SUPER－GEMINI $15 \sigma \epsilon$ ò λa ：
－Пגа́тоs хартוои̇ $15^{\prime \prime}$ аркєто் vıa єктüாшōn 233 характท்р $\mathbf{2}$／ ура $\mu \mu \dot{1}$
－KєФа入ウ் ठıảpкєıas弓 ω ris 100．000．000 xapakтท̇ןwv
－Mvijun（BUFFER） хшрŋтіко̇тпtas 16 KB．
－Графıкє́ऽ пара⿱та̇бєıऽ 3624 опнєiwv
－Oגa та umó入oına плєоvєктர் μ ата тои SG－10

STAR SD－10
O Δ uva μ ikós
0 véos SUPER－DELTA
－Taxütnta 160 cp
－Поіотпта үрафர் NLQ
－Ava入оүıкท் єктùm
－ 240 проурациат характйрєऽ
－Tрофобобia xap

－ 1920 бпиеіа（DC бтіs үрафікє́s парабтáбєіs
－$\Sigma u \mu \beta i \beta a \sigma t o ́ t \eta t a$ ódous tous COMPUTER

POWERTYPE H ypaфo $\mu n \times a v n$ ítou COMPUTER
－Eктúnwan $\mu \epsilon$ μ apyapita（DAISY WHEEL）
－Мєріббо́тєра апо் 100

－Тахйтұта 18 cps ．
－$\Sigma \tau a \dot{v} t a \rho ~ п a \rho a ́ ~ \lambda \lambda \eta \lambda \eta ~$ каı бєıрıакウ் є́ $\xi \circ \delta$ оऽ проऽ tov umo＾оүібтウ்．
－$\Delta ı \pi \lambda \dot{\epsilon} \varsigma$ єктuாய்бЄıS．

$\Sigma \in$ ònous tous єктumbtés STAR пробарио்ろєтаı аuто் μ ата трофобо́тпs xapтioú（PAPER FEEDER）

1 info－quest $L_{\text {td }}^{\text {td }}$

STAR SD－15
Duvauıкóskaı
Eпауv $\in \lambda \mu a$ тіко́s
Абüүкрітоs бта 160 cps， бıаӨ́̇тєı єкто́s апо் та плєоvєктй μ та то то SD－10：
－Плátos єктüாшơクs $15^{\prime \prime}(38 \mathrm{~cm})$
－Mvíun（BUFFER） Xшрптіко́тұтац 16 KB
－ 3264 бпиєia（DOTS） бтіऽ үрафікє́s парабтáбєıs．

STAR SR－15
O Enavv $\in \lambda \mu$ атıкȯs．．．yıa єпаүV $\in \lambda \mu$ дтієऽ．

Taxútŋta 200 cps кaı єủpos EкTünwons 15°－óti акрıßüs amaıtєi évas
 COMPUTER－кı єпוாत̇̇ov $\mu \mathrm{v} \dot{\mu} \mu \eta 16$ KB yıa va $a \pi \in \lambda \in u \Theta \in \rho \dot{\omega} v \in T a \iota$ бu̇vtoua o uпо入оүібтท்s． Mє ò λa та плєоvєктíuata tou SR－10．Eктumwtís пои е̇Xєı σ Xєठıaбтєi yıa

STARS R－10

Avtikatégtnoe tov RADIX－10
－Taxútnta 200 cps
－Поо́тпта ypaфர்s NLQ
－ 240 проурациатı弓ӧиєvoו характи்рєऽ
－Autónatп топо日étŋon of $\lambda i \delta \omega v$ xaptioú
－Autónatŋ kivnon

－Xaun入ñ копп் хартіoú
－Master Print Mode
－Ava入оүוкп єктüпшõ
－

H ФIE

Meyảin emituxia onuєiwoe
п $2 \eta^{\text {E }}$ Ek $\theta \in \sigma$ П Memox－ Commodore nou Eyive $\mu \in$ таदú $30 / 11-2 / 12$ ото

Hilton A θ nvüv，XıAıá $\delta \in \varsigma$ ク̇tav oi veor nou

avtamoкріӨnkav ото kä久 $\in \sigma \mu$ a Ths ETa！pias kal éomeu⿱ar va סouv amó kovid tov kaivoúpio Commodore－128 in va naikouv video games otov кла⿱䒑⿰丿㇇⺀⿺廴 Commodore－64：

To «k 10 ＂ThS Ek Eeons фuouká，ṅtav η anokả $\lambda u \psi \eta$ ths，puӨikns ma，Amiga． ：Etal ol emakkentes Ths． ék θ eans tou Hilton eixav tinv eukaipia va Өaujáoouv anó kovtá TПv пipürn Amiga пои $\in \phi Ө$ वбє σ тП $\chi \omega \overline{\text {－}}$

ра μ ац каі пои праүцатіка evturnwoiage（test rou
 $\sigma \in \dot{a} \lambda \lambda \in S$ ．$\sigma \in \lambda \dot{I} \delta \in S$ TOU перıoסıkoú）．

Ektós ó $\mu \omega \mathrm{s}$ amò tous EvӨouवiüठeis фiגous twv home micros，kai ol єvסıaфєрónevoi үıa епаүує $\lambda \mu$ атіке̇s єфариоуе́s eixav tiv eukalpia va סouv amó kovtà tous
єпіхєірпиатікойs PC－10 kaı PC－20 kaӨüs kaı סıáфорa періфєрєıака́．

Акојца，ото хшро тои software，ékavav aioӨŋт！̀
 e\lnvikd software houses odms Teledata，Computer Logic，Bytes，LH：Software， Unisoft к． ．
Iठıaitepn єvTu̇ாwon ä $\lambda \lambda \omega \sigma T \epsilon$ прока́ $\lambda \in \sigma \in$ то $ү \in u ̉ \mu a$ каı η avoixtị ouそŋ்Tnon mou ako＾oúӨñє，$\mu \in T a \xi \cup$ ù Twv 120 dealers ths Memox пои проє́pxovtav ani ó入n tఇv EAAảסa．

1

 MEMOX，ото прӥто пגávo
－к．Eapavtivións YreúOuvos $\pi \omega \lambda n \dot{\sigma} \in \omega v$ Business Systems， otn μ éan o $\Delta i \in u \theta u ̈ v \omega$ viv ¿ü μ ßoulos к．O．N．Katoávns kai ठeछiá o к．П：
Apyupómouìas YmeúOuvos nw

इтіуціоттито апо́ тп ouveotiaon tuv dealers ths Memox katá тŋ̆ סıápkeıa tins ékधeors．

3

Amiga：．Eva aotêpı ү үevviètaı！

Commodorona日eis＂ бuүкеvtpüvovtal vúpw ano tous CBM－64 yia va metúxouv to hiscore oto＂ Raid over Moscow＂

EBAOMO EONIKO

इYNEDPIO TH乏 E．E．E．E．

H otevì oxéan

Emixeip oiakins Epeuvas kaı

 opyávwoŋ kaı סıоікクoŋ；
 ＇Eßסouou EӨvikoú乏uve δ piou Tns E入入Пvikn̄s Etaipias Emixєip Epeuvüv．To ouvéסpio，
 Hilton，otis 22 kal 23 No $\in \mu$ ßpiou．

T ηv єпion $\mu \eta$ evap $\xi \eta$ Twv
 utioupyòs EӨvikṅs Oiкovouias к．Кш̈otas ミпиitns．Katá тпv Evapkти̇pıa ouve рíaon，
「pnyópns Прaotákos，
 про́є $\in \rho \circ s$ THS E．E．E．E，к．
 про́ $Є$ סоऽ tou סioikntikoù бu β ßouliou ths EOvikn่s Tрárȩas к．Аvб́ре́as

Tреıs סıaкекрıие̇voı $\xi \in \mathrm{voi}$

TA EPГANEIA TH乏 ПIITH乏 EKTYП』

LE SPECIALISTE FRANCAIS

MEAANOTAINIE－KAETE ANA $\Omega \Omega I M A$

ГIA HA．ГРАФОМНХАNE KAIHA．YHOAOCIETE

 E．E．E．E．

Frisk（avtimpó $\epsilon \delta$ оऽs otov
тоиє́a є́pєuvas каı
texvonoyias tns IBM
Eupünns），Peter I．Kolesar （ $т$ ои Пavemıoтпиiou
Columbia tns Néas Yópkns） kaı J．K．Lenstra（tou Kèvtpou MaӨquatıкїv кaı
 tou Amsterdam），ká̀uчav $\mu \in$ TIS о о INies tous tqv $a \lambda \lambda \eta \lambda \in \pi i \delta \rho a \sigma \eta$
Enixєıрпбıаки்s Epeuvas кaı
 ミтроүүи
 Апот $\epsilon \in \sigma \mu$ атікой
$\Sigma x \in \delta ı \sigma \sigma \mu$ о் Плпрофорıакш்v $\Sigma \cup \sigma т \eta \mu a ̇ t \omega v, \mu \in$ кu̇pıa

DEC CUSTOMER DAY

 $T \omega v \pi \epsilon \lambda a t \dot{\omega} v, \phi i \lambda \omega v$, $\epsilon v \delta ı a \emptyset \in \rho о \mu \epsilon ̇ v \omega v$ каı єкпробய̈ாниV тои ти̇пои үıa та проїȯvta каı тіS
 Equipment Corporation， Éyıve otıs 27 Nоєرßpiou бто $\xi \in$ vodoxєio Intercontinental， η єк $\dot{\eta} \dot{\lambda} \dot{\omega} \omega \sigma \eta$＂DEC
CUSTOMER DAY＂
 ṅбav η DCC Data Computer Corporation S．A．kaı η Digital Equipment Corporation South East
Europe and North Africa Division．

H прӥтף，וסри̇Өŋкє то 1983 каı єіvaı апоклєıбтıк்่
avtimpóownos tns DCC otn хш்ра μ ац．Апо் то 1984， аvтıпробшாєப்єı ϵ пions in Racal－Milgo，mo入ú үvшбтウ̇ катабкєuȧбтpıa бuđкєuய்v чクфıакク்ऽ єпıкоıvшvias （modems，multiplexers k．á．）．
 ठıaтnpei ठu̇o μ еуव்入ous uпо入оүıбт̇̇ऽ VAX．Tov Октш்ßрıо тои 1984，í ρ обє ото Нра́клєıо Крŋ்тпऽ топıко் yрафєіо техvikńs ипобтท̇рı乡пs，єvய் avtiatoıхо үрафєіо Өа лєıтоирүŋ்бєı каı отп Өєбба入оviкп aпȯ тпv ávoı $\xi \eta$ тоu 1986.

O к．Гiávvŋs Povtñpクs，yevikós סıєuӨuviñs tns DCC катà in ठıápкєıa tns opıגias tou．

 evסıaфépov．

To Nèo Evioxupévo Apple Ile

Nèos Eneधppyaotns 65C02． Kєvрікп் $\mu v \check{i} \mu \mathrm{n} 128$ KB．12＂ OӨóvn 1920 xарактппр ω ． Eüornua Дıбкغ̇ாas（Floppy
 （Slots）．Evo $\omega \mu a t \omega \mu \dot{\varepsilon} v n$
 Biвגio．E入入nnviкó Bißخio Iסıokntin．
Тріа Проүра́циата．

Néa Пpoióvta

Enėktaon $\mu v n \dot{\mu}$ ns $\sigma \varepsilon \mathbf{1 M B}$ ． Eüvס६on $\mu \varepsilon$ vغ̇ou túnou Floppy．Disk 3，5＂，x ω рnпк． $\mathbf{8 0 0}$ KB．Pascal 1．3．

Quvatótntes Eпėktaons
¿ӥvס६оп $\mu \varepsilon$ Ектипшткка́， Mouse，Грачоиnxavés， Plotters，Epyaotnpıaкá kaı Моиаккаं ópyava．Мع Mnxavníuata，Hard Disk $5,10,21,45,126 \mathrm{MB}$ ． Local Area Network．

AppleComputer

AOHNA
AӨHNAÏKH COMPUTERLAND
Mعбоүвішv 320 Ay．Парабквuń
Tǹ：6529．699－6521．379

MEIPAIAE

DATA MANAGEMENT
＾ع $\omega 0$ ®̇vous 20
Tǹ：4517．786－4520．222

OEE／NIKH
ФYNAMOPФIKH
Мптропо்лєшs 34 \＆ 44
Tnì：281．249－263．165

IRANNINA	ПATPA
PROGRAM	MICROCOMPUTERS COMMERCIAL
Хap．Трıкойпп 26	Maıż்os $20-22$
Tnd： 34.301	Tnर̀：27．18．42

KPHTH
INFOKRETA ЕМПОРІКН
Tбакірn 11 Нракддєı
Tn入̀：28．32．51

KEPAIETE!

EEOYZIOAOTHMENOI ANTIIPOERIOI ПQAHEERN O

AOHNA
 COMPUTER SHOP

ETOYPNAPA 47
TH $\cap: 3603594$
ATHENS COMPUTER
CENTER
EONRMOY 25 \＆MITOTAइH
TiAA： 3609217 준
MHCROBYTES A．E
ETOYPNAPA 16
THA： 3623497
ANAETAEIOY \triangle
TOEITEA 1 THへ： 8831198
Tइ $\AA \Gamma K A P A T O \Sigma \Sigma T A \Theta H \Sigma$ \＆ EIA．O．E：
K $\Omega \wedge$ AETH 11
M．Σ APANTAPI $\triangle H \Sigma$ A．E： K $\Omega \wedge$＾ETH 9 THへ： 3603598
K．XANKIA \mathcal{O} ．E．
AГ．MEAETIOY 31
COMPUTING LTD．
$\Pi I N \triangle A P O Y \& T \Sigma A K A \cap \Omega \Phi$
TH＾： 3631361
X．TEIPIKOE A．E．
КНФІГІA乏 212 THへ： 6715814
AOHNA•I：KH
COMPUTERLAD
\：MESOFEISN 320
TH＾： 6529699
BOYTZOYNIAHE ПIRPFO乏
NEOTTOAEMOY 2 THA：
7513717
CIMBO OCARINA
N．ППA乏THPA：\＆M：A ITAE 149，AГ．ANAPIYPOI
NOROOETH乏 \＆इIA O．E $\triangle H M O \Sigma O E N O Y \Sigma 209$, KA＾NIGEA THへ： 9512636 МЕЕXH TOY HXOY E．П．E． ЕКОҮФА 24 THへ： 3600304

PLOT I

OEMIETOKへEOY $23-25$
THA： 3621645
PLOTIPLUS
EOA M MOY \＆EOYATANH
16，TH $\cap 3621645$
PLOT II
KOYNTOYPIRTOY 94，TH＾： 4119818
SPOT III
МНТРОПОАЕЛЕ 5．THへ： 3235228
MAGNET COMPUTERS O．E KHФIइIAㄷ 263 THM： 6216926 PADIO AOHNAI KHФIEIA乏 212 TH＾： 6472339 MHXANOTPAФIKO KENTPO へOГILTIKHE E．П．E． NIKHФOPOY 1 THへ： 5240986 Г．ПAZAE ПEIPAIS 1 TH＾： 3214109 MICROWORLD ミTADIOY 10 TH＾： 3234743 МПОТЕАРНЕ ЕПYPO乏 XA•IMANTA 34 TH＾： 6821424 BORA COMPUTERS $\mathrm{A} \mathrm{\Gamma}$ ．I ANOOY 82，AГ． ПАРАЕKEYH TH $\cap: 6398984$ АФОІ ЛАМПРОПОҮ＾О ¿EPIФOY KAI E\IANOY： 12 ПИ：KOAIATEOY ETADIOY KAI AIO $\cap O Y$

INFOPLAN
ETADIOY 10 THへ 3233711
YПOАOПILTHЕ ЕППЕ．
META ΞA 34，Г \triangle YФA $\triangle A$ TH
8955644
SPOT V
META $\Xi A ; Г \triangle Y Ф А \triangle A$
Г．ЕKAPOE
OHB Ω N 2，ПEPIETEPI TH
5722556
K．МПАКА－Г．E．इTAYPOY O．E：
HПЕIPOY 3 TH $\triangle 8819100$
TइANAKH乏 ПPOKOПIO \＆
EIA O．E．
AETIDESN 9
COMPUTER TIA इENA
COMPUTER COSMOS
$\triangle A B A K H$ 49，THA： 9523100
MIC ROSTEP
APAПAKH 56 KAMЛIOEA
MINION A．E．
ПATHEIQN \＆BEPANZEPOY
AOHNAI
ПA乏 TPIKO E E．\＆$\Sigma I A$
ГKYZH 5 TH $\cap: 6467825$
ФI $\cap O \equiv E N I \triangle H \Sigma A . E$.
П．ФАへНРО
ЕAMOYXOEA．E
BOYNIATMENHE 387 THA：
9701071
MEMOX CRAFT ETIE
OETIDOE 10 \＆
MIXÅAKOПOYAOY THへ：
7238958
SCAN
E $\wedge A I \Omega N 41, N . K H \Phi I \Sigma I A T H \cap:$ 8014371
TONIC CLUB
A Ω ППEKHE $19, \mathrm{KO} \cap \Omega \mathrm{NAKI}$
KOKKOPHE MHNAE
DIGITAL
AXAPN Ω N 257 THA：
PA $\triangle I O$ A AHNAI
ПATHEIQN KAI KEФA＾HNIA乏 ETADIOY 10
COMP． 27
XPYェIППOY 27 TH＾． 9022912
AF．I Ω ANNHE
$\wedge E \Omega \Phi$ BOY $\triangle A F M E N H \Sigma$

OEEEAへONIKH

KENTPO H \wedge
YПIO O OFILT $\Omega N_{\text {«EYK }}$ NEI $\triangle H \Sigma$ \％ OEAГENOY XAPILH 51 TH \triangle ： 833577
INFOVISION
A $\cap E E A N \triangle P E I A \Sigma 79$ TH \cap
846682
TEXNO $\triangle I A \Sigma T A \Sigma H$
KAMBOYNISN 8 TH＾： 223966
MICRODIGITAL NORTH TEIMIIKH 19 TH＾： 228624

ЕХРО－M：\triangle OYФO乏 Е П．Е TEIMILKH 27 THへ： 276909 M．P．S．ФРАГKАKH
ПO＾YTEXNEIOY 47 THへ 536968
ELECTRIC TIME
AЛ：ПАПАNAミTAEIOY 174
THA： 313100
ETOYNTIO PAMONA
ПАПАТН 15 ТНへ： 932845
CHIP

MIIEPAIA $\Sigma \Sigma I M O \Sigma$ MHTPOПO $\triangle \Omega \Sigma 25$ THへ： 221126
MICRO
EPMOY 2 TH $\wedge: 534258$
$\mathbf{K} \boldsymbol{\Omega}$
K Ω TइH Σ FABPIH \cap

EEPPE

TP．T乏AKIP $\triangle A H \Sigma$ \＆$\Sigma I A$ O．E．
\triangle ．$Ф \wedge \Omega P I A 8$ TH $\wedge: 25035$

KABA＾A

1OPAANI $\triangle H \Sigma$ IOP $\triangle A N H \Sigma$ F．\triangle HMOKPATIA乏 47 THA： 834148

AMYNTAIO
$\Theta E O \Delta \Omega P I \triangle H \Sigma K \Omega N / N O \Sigma$ M．A $\cap E A N \triangle P O Y ~ 15 ~ T H \cap:$ 23066

TPIKANA

MHTEIOY：EYOOミIA
XATZHГAKH 9
TPIKA $\cap A$
EYPOE
SYROS VIDEO AND
COMPUTERS

BEPOIA

A IIKIDHE ANAETAEIOE МНТРОПО

IANOH

इEAISNH AN $\triangle P O N I K H$ B．K Ω N／NOY 35 TH $\because: 20568$ 26831

KAETOPIA

EANANIDHE TERPIIOE A Ω ．KOMNHNOY $24 \cdot \mathrm{TH}$ ： 23135

IתANNINA

PROGRAM E．П．E．
XAP．TPIKOYПH 26 TH＾：
34301

KANAMATA

MATTANAE OEO $\triangle \Omega P O E$ ． ФPANTZH 18 THN： 25149

APTOE

SYTEC E．I．E：
KOPAH 2 THA： 21561
AMANIADA
ON LINE
OORNOE \＆AMA \cap IA 30

IAYKA NEPA

ГPHГOPIOY EAENA
П．ЛAYPA 97

AAMIA

a）NTE $\triangle \cap A \Sigma ~ \Sigma E P A \Phi E I M$
＾E $\Omega \mathrm{NI} \triangle \mathrm{OY} 21 \mathrm{TH} \Lambda: 20795$
B）VIDEO AND COMPUTER
CENTER
OOSNOE 23
TPIIIOAH
TEOYTEANHE TERPIIOE ЕПЕТЕЕРОПОҮヘOY 24．THA： 222322
ПATPA

COMPUTER PRACTIKA EIE MAIZ』NO 47 TH＾： 274686 AIIIO
ミПYPOПOYЛO乏 B．\＆$\Sigma 1 A$
O．E
ВАПФОҮР 10
XANKIDA
TPIANTAФYへへOY K Ω N／NOE
KPIEZ 2 TOY 3 TH $\Lambda: 28122$
BONOE
SYSTEM ETIE
K Ω N 2 TANTA 140 TH $\AA: 38221$
MHXANOIPAФIKH O．E．
ГКへABANH 85 THへ： 38362
HPAKNEIO
MICROLOGIC
Eへ．BENIZE $\cap O Y$ 21 TH＾：

282553

PEOYMNO

M．XAПKIA $\triangle A K H$ ． H ． ПETOY AK HE \＆EIA O．E． HF．ГABPIH＾6：8 THก： 25033

POAOE

RODOS COMPUTER CENTER
AEMESOY 8－10 THA： 33888
AAPIEA
CHERRY COMPUTERS
M：A $\cap E E A N \triangle P O Y$ \＆
ПАТРОКЛОY 12 THN： 223702
KATEPINH
COMPUTER CENTER
AГ．АAYPAE 7 THA： 28623
XANKIAIKH
इAMAPAE Γ \＆YIOE O．E．
KAnYBIA TH＾： 51010
ПОАYTYPOE THへ： 23688

XANIA

MEMO COMPUTERS
TZANAKAKH 19
ФI Ω TOAHMHTPAKH乏
IRANNHE
TH $\Lambda: 28738$

MERAPA

Г．KA OZZOYMAE \＆EIA O．E． 28nc OKTתBPIOY 180 TH＾： 29204

neipaiaz

TECHNOLAND AnKibla \triangle OY． 113 THN：
4131372
MICROLAND A．E．
A $\$ KIBIA \triangle OY 87 THA：
4118736
PIREAUS VIDEO CENTER
KONOKOTPSNH 108 TH＾：
4131128
SPOT
B．ГERPIIOY
LOGICA COMPUTERS
ПАПАNIKO 1 H 29.31 TH＾：
4619722 KEPATEINI
\＃תMIA \triangle HE ПAY
B．ПAY $\cap O Y ~ 67$ KAETE \cap A TH $1: 4124117$
I $\Omega \Sigma$ НФIDH乏 $\Sigma \Pi Y P O \Sigma$ E．П． 1．\triangle HMOKPATIA 71
KEPATEINI
$\mu \dot{\operatorname{\epsilon }} \mathrm{\rho os} \mathrm{tou} \mathrm{кататє} \mathrm{\Theta єı} \mathrm{\mu ̇̇vou}$ $\mu \in$ тохıкои̇ кєФа入aiou ths， пои фӨávєı ta 60 єкато μ йрıа $\delta р а х \mu є є \varsigma . ~$
－Опшs uпоүра́ $\mu \mu \iota \sigma \epsilon$ бтпv opidia tou o yevikós סוєuӨuviñs tns DCC к． Гiàvvns Poviṅpns，o єтĩolos рuӨرós avántuそクs twv єpyacıïv tns єtaıpias uпєрßaiveı то 30\％．

Metá tov к．Povtṅpŋ，то
 Digital，η опоіа єivaı η $\delta \epsilon \dot{\text { U }} \in \rho \eta ~ \sigma € \mu \dot{\mu} \varphi \in Ө$ os катабкєчйสтрıа

єixav oav Өं́ $\mu a t a:$
－Digital－Філобофia， ミтратпүıкп்， Архıтєкто⿱וки் каı Проїòva．
－DCC каı Digital ото
 єпıхєוрウ்бє $\mathrm{\omega v}$ ．
－DCC каı Digital ото
 ins Autouatoпоinons Графєiou．
－DCC каı Digital ото xüpo twv Eкпaıঠєutıкüv Iסpuцátwv каı $T \in X v i к \dot{u}$／

इEMINAPIO ME OEMA TH XPH Σ H

 T Ω N MIKPO•Y•ПOへOTIET Ω N Σ TILMIKPOMEEAIEE EПIXEIPHEEI乏

H Emıтропท่ т ωv
Eupwraïküv Koıvotŋ்тwv，$\sigma \epsilon$
$\mu і а$ пробпа்Өєıa va ava入úбєı то Фaıvö μ єvo tns סıádoons

 Аıоікпопs Emixєı

H є́pєuva autì，$\mu \in$ тітло «Оı иıкроӥполоүıбтє́ऽ бтІऽ
 ठıaסıкабієऽ μ ıкрїv єпाхєєिர்бє праүнатопоюŋ்Өŋкє бє трєІऽ X $\dot{\omega} p \in s$ tis EOK：Tqv Ip入avסia，in Δ avia kaı т ηv E入入áठa．Ta otoıxєia бuүкєvтрїӨŋкаи $\mu \epsilon$ бuvevteú $\xi \in I S$ anó 150 єпוхє！ oו 50 єivaı $\epsilon \lambda \lambda \eta$ vikés．
Та апотє $\overline{\text { є́ } \sigma \mu а т а ~ т \eta s ~}$
 ठıápкєıа бєцıvapiou пои opyávшбє η Епוтропท் twv Eupwraïкш்v Koıvotウ்тшv （E．E．K．），otis 16 Noє μ ßpiou ото Zàппєıо Mє̇үаро．
$\mathrm{H} \epsilon \kappa \delta \dot{\lambda} \lambda \omega \sigma \eta, \dot{\mathrm{a}} \rho \mathrm{x}, \boldsymbol{\sigma} \mu \epsilon$ хаıрєтıбдо́ тои סıєuӨuvtர் тои үрафєіои тŋऽ Епוтропท்я otףv AӨウ̇va，к．I．इı $\dot{\omega} \tau \eta$ ． T $\eta \mathrm{v}$ є̇va $\rho \xi \eta$ тои $\sigma \epsilon \mu \mathrm{lva} \mathrm{\rho iou}$, $\kappa \grave{j} \rho \cup \xi \in$ о коऽ L．E．Andrease TMS E．E．K．，о опоios tóvió о்ті η єпוтропи் ипобтпріろєı проура́ $\mu \mu$ ата пои афорои̇v бuүкєкрıие̇ves є́ $\rho \in u v \in \varsigma$ ．Tп
 A．J．Liston tou Ip入avסıкoú İри́датоs Δ іоікпопs
Епıхєıрர்бє
 каı пароибіабє бтоus парєирібконє́vous та
 Katómıv，avє̇ாtuそav tis апо் $\psi \in і$ г той $\epsilon \mu \pi є ı \rho о ү v \dot{\mu} \mu o v \in s$ апо் єрєuvŋтіка̉ ıठрй μ ata каı
 kaı aпо் то хш̈ро тпs ßıounxavias kaı тои

Protilinne computer center sa

NAYTIMIA

－Voyage estimation
－Vessel Accounting
－Accounts Payables
－Accounts Receivables
Exchange Rate System
－Vessel particulars
－Spare parts

AгФANEIEE

 лєıтоирүıко் би்бтпиа UNIX，XENIX，IDRIS，FOR：PRO， RM／COS ท் IBM－PC каı IBM－PC COMPATIBLES

anגá, oi кa入útepor

'Eva óvoua nou orn סıєठ̂vn ayopá eivaı
 Eגлáסa! H véa ocipá tøv PRINTERS tns OKIDATA,

 $\Gamma_{1}{ }^{\text { }}$ auto $\lambda \dot{\lambda} \mu \varepsilon$ óti or PRINTERS tns OKIDATA Eivaı oupBatoi $\mu \varepsilon$ oas tov iסio.

 каı ү६viká va проүрациатібєтє tov PRINTER, xตpis

 кочипıй

Kaı Bébara, eivaı oupBatoi kaı $\mu \varepsilon$ tov

 غ̇va калӫठıo.

 Yvตotó áчoyo SERVICE ins ATKO COMPUTER SYSTEMS, ol PRINTERS ins OKIDATA kávouv.

Tćpa גoinóv...

\boxtimes OKIDATA

- пла́tos ypaب́s $80-236$ характ.
- характп́реऽ апо́ 5-17 cpi
- поótnta ypayounxavňs (NLQ)
- пара́ $\lambda \lambda \mathrm{n} \lambda \mathrm{n}$ ǹ каı овıрıакñ $\dot{\varepsilon} \xi \circ \delta o s \bullet$ graphics

Me kגexouí pătio...

תРА ГІА ПРАЕЕІІ ${ }^{\prime \prime \prime}$

－Tous סıáфороus $\lambda o y a \rho ı a \sigma \mu o u ̀ s ~ \varepsilon \sigma o ̇ \delta \omega v ~ / ~ \varepsilon \xi o ̉ d \omega v . ~$

AOHNA

NouiZns Pıavkoù 6 Пúpyos Атò̀入luv Tn入． 6912.854

Tఇ入． 520.776

$\epsilon \mu$ поріои．

Прйтоs $\mu \mathrm{i} \lambda \eta \sigma \in$ о к．Г． Kupiónou入os，Про́єброऽ тои Вıотєхviкou̇ Eпıцє AӨŋvய̈v，о oпоios
 апопробаvатолıојо́s каı параплпрофо́рŋоп тшv $\mu ı к \rho о \mu є \sigma a i \omega v$ єпıхєı $\tilde{j} \sigma \in \omega v$ $\sigma \in Ө \dot{\epsilon} \mu \alpha т а$ плпроофорікп்s． 0
 tou इuvס́єб Bıоиךхаvı山்v，катє́бтךбє бафウ் тŋ $Ө \in$ тIкท் бтáoŋ TףS
 $\theta \in \mu a$ Tทs $\mu \eta x a v o \rho y a \dot{v} \omega \sigma \eta s$ twv μ וк $\rho о \mu є \sigma a i \omega v$ єпıхєıрウ்бєшv． 0 к．В．

 Yполоүıотї̀ каı П入профорıкп்ऽ，av̇̇ $\lambda \cup \sigma \in$ та порібната тпs Epeuvas тои

To $\sigma \in \mu ı$ ıápıo $\sigma u v \in x i \sigma t \eta \kappa є$ то＂апо்уєчиа $\mu \in$ тіs о μ л入iєs тшv к．к．＾：Гка்т弓п，
 Kaıvorouıüv kaı
Texvo৯oүıкṅs Avámtuそŋs tou EOMMEX каı Г．Ţoávou ins Епוтропท่s Eupwraïкш்v Koivotịtwv．

О к．＾．Гка்т弓пऽ，
avaфє́рӨŋкє отіऽ пробпáӨєıеऽ поu кávєI o EOMMEX va β oŋ $Ө \dot{\eta} \sigma \in I$ TIS
 $\mu \eta x a v o \rho y a v \omega$ Өoủv．
Пapá $\lambda \lambda \eta \lambda a$ ，o EOMMEX，
 $\sigma \cup \mu \beta o u \lambda \epsilon \cup ் \sigma \in I$

 yıa va $\in \kappa \mu \in т a \lambda \lambda \in \cup Ө o u ̉ v$ aUTĖS，п $\lambda \dot{\eta} \rho \omega \mathrm{S}$ TIS סuvatótףTES tףs owotís $\mu \eta x a v o \rho y a ́ v w o \eta s$.

О к．Г．Ţoávos，$\mu \mathrm{i} \lambda \eta \sigma \epsilon$ Yıа тпV коіvотікп் по入ıтікп் пои пєрıла $\mu \beta \dot{\operatorname{van}} \in \mathrm{I}$ тП хрпнатобо́тпоп т ωv $\mu ı к \rho о \mu \in \sigma a i \omega v$ єпıхєı $\rho \dot{\sim} \sigma \in \omega v$ ， тףv єкпai $\delta \in \cup \sigma \eta$ $\sigma \tau \in \lambda \in X \dot{\omega} v$ ， тпv парохи் п入профорıш்v，тך $\delta \eta \mu$ ооируia ке்vт $\rho \omega \mathrm{v}$ каıvотонı $\mathbf{\omega} v, ~ t \eta v \in v i \sigma x u \sigma \eta$

To $\sigma \in \mu \mathrm{v}$ vápıo парако入ои்Өŋ̆баv пєріпои 100 бúvє $\delta \rho$ oı，поu єкпробшпоบ்எаv $\delta \eta \mu$ о்бıоия
 каӨüs каı єтаıрієऽ апо் то
 ßıoнnXavias кaı Tךs ßıotexvias．

Mєтá aпó кá $\theta \in$ о $\mu ı \lambda i a$ aко入ouӨou்бє $\sigma u \zeta \dot{\eta} \tau \eta \sigma \eta$ ， о́пои оı парєирıбко̇ $\mu \in \mathrm{V}$ оı єіхаv тп סuvaто́тпта va єКф ρ व்oouv TIS aпо்ษЄIS TOUS kaı va סıatumш்бouv єрштท̇бєIs проऽ тоÜs оцı入пт̇̇s．

ミEMINAPIO ГIA TOY

ҮПO＾OГIइTE乏 इTHN EKПAIDEYミH

Etıs 18,19 каі 20 Noє μ ßiou，Є̇үıve otous xш்pous twv єкпaıסєutnpievv ZHPI ΔH éva $\sigma \epsilon \mu$ ıvápıo $\mu \epsilon$
 uno入oүıбтє́s otnv
 autó artєuӨuvótav $\sigma \epsilon$ єкпaıסєutikoùs，kupiws，à入ȧ
 поu，$\mu \in$ Tov Є̇va $\dot{\eta}$ tov á̀入人 тро́по，є́рхоvтаı $\sigma \in є$ єафர் $\mu \epsilon$
 umo入oүıotüv yıa єкпаıסєutiкойऽ бкопойs．

Eıaŋүทtés ota $Ө \dot{\epsilon} \mu$ ата пои апабхо்入そбаv то $\sigma є \mu ı$ ıápıо， ŋ̇таv oı кúpıoı Avסрє̇as Δ ріßas（Фибıкós каı
 тои ЕЛКЕПА каı тои К．П．Е． ＂Δ пио́крітоц＂，пои апо் то $\Sigma \in \Pi т \dot{\epsilon} \mu ß$ ріо тои 1985
 єкпаıбєuтர்pıa ZHPI $\Delta \mathrm{H}$ ）каı Táoos AvӨoulıás （ ϵ ІІıкєufévos otn
 $\mu a \Theta \eta \mu a \dot{T} \omega v$ ，uпє乇்Өuvos тои т $\mu \dot{\mu} \boldsymbol{\text { атоя }} \mathrm{H} \mathrm{\lambda}$ ．Үполоүıотїv

 बтףV єкпаi $\delta \in \cup \sigma \eta$＂．

ата єкпаıбєитп்рıа $\mathrm{Znpi} \mathrm{\delta} \mathrm{\eta}$ каı Ko $\lambda \lambda \in ү$ үou $A \theta \eta v \ddot{v} v)$ ．

Та Ө́́цата пои ка́入uчav ои

$\Delta \epsilon u t \in \dot{\rho a}, 18$ No $\epsilon \beta$ рiou：
a）Tı єivaı kaı пш்s $\lambda \in ı t o u p y \in i$
о H / Y（єıaŋทクтウ்s к．Δ pißas）．
乃）LOGO：Mia $ү \lambda \dot{\omega} \sigma \sigma a$ үıa

AvӨou入iàs）．
Трітп， 19 Noє μ ßpiou：
a）BASIC：H גоүıки் тои проүраниатıбцои் каı П
 ß）Екпаıбєитіка்
 AvӨou入ıás）．
Tєта́ртп， 20 No $\epsilon \beta$ ßpiou： a）PILOT：Eva
 бта хє́рıа тои єкпаıбєитікои̇ （єıoŋทŋтウ்s к．AvӨou入ıȧs），
ß）Opyávwon tou oxo入єiou $\mu \epsilon$ in ßoñ θ єıa тои H / Y
（єıбŋүワтท்s к．Δ ріßаs）．
Oı по入ú єvסıaфє́pouбєऽ каı кататопıотıкє̇s
 $\epsilon \mu \pi \lambda$ outig $\mu \dot{\epsilon} v \in S \mu \epsilon \epsilon \pi i \delta \epsilon!\xi \eta$ twv avà̇oywv проүра $\mu \mu a \dot{\tau} \omega v$ aпó モ̇vav uпо入оүıбтท் Apple lle $\sigma \epsilon$
 бто хш்ро тоu koıvoú，ónws каı $\mu \in п \rho о \beta о \lambda e ́ s ~ s l i d e s . ~$
 єпако入оиӨойбє бu弓ŋ̇тпбп．
$\mathrm{M} \in \delta \in \delta$ оиє̀vo то үєүovȯs
 єivaı прауратіко́тŋта пои $\delta \in v \mu \pi о \rho о и \mu \epsilon$ va aүvoŋ்боu $\mu \in, \sigma \epsilon \mu \mathrm{Ivápıa}, \mathrm{пou}$ Фє́pvouv $\sigma \epsilon \epsilon ா a ф \grave{~ t o v ~}$ єкпаıбєUтіко் $\mu €$ тоv uпо入оүıатท்，єivaı аझıє̇паıva． As єлпіооицє о்т θ a סой $\mu \epsilon$ бúvtoua каı $\dot{\text { a }} \lambda \lambda \in \varsigma$ tє́toies прштоßоилієя．

MICRODISK DRIVES A Π THN FUJITSU．

H Fujitsu，éx ${ }^{\prime}$
 disk drives，$\mu \in \mathrm{X} \omega \rho \eta$ тікотт η та пои архі了еı aпò та 6，6 Mbytes kaı $\phi \theta$ ȧveı $\mu \dot{\epsilon} \mathrm{X} \rho \mathrm{\rho}$ тa 474 Mbytes．

Ta M2230 AT／BT каı M2233 AT／BT Eivaı disk drives túnou Winchester kaı апотєлоúv та прӥта $\mu \circ v t \dot{\epsilon} \lambda a$ Ths $\sigma \in!\rho a \dot{s}$ ．To M2230，хрпбюнопоєі бібко 5 1／4＂хшрптіко́тптая 6，66 Mbytes（unformatted）kal
 єүүрафர்s．Avti єта，то
 diakous 5 1／4＂$\mu \epsilon$
 13，33 Mbytes（unformatted）
 avȧyvwans／єyүpaфn்s．

Ta M2230 AT／BT каı M2233 AT／BT Éxouv to iסıo $\mu \dot{\epsilon} \gamma \in \Theta^{\circ}$ ऽ，μ mopoủv va

 $1,5 \mathrm{Kgr}$ ．Mropoúv va

 ypaфєiou，$\delta \eta \lambda a \delta \dot{~} \sigma \epsilon$ пробшпıкойs uпо入оүוбте̇s， $\sigma \in T \in \rho \mu a t i к \dot{\jmath} \dot{\eta} \boldsymbol{\eta} \sigma$

Гіa $\mu \in$ Ya入üт $\in \rho \in S$ anaıṫ்̄Eıs umápxouv ta disk drives，túnou Winchester， M2321K каı M2322K．To M2321K «anoӨクкєヒ̇є！» 84 Mbytes $\sigma \epsilon$ tpeis סiokous eví

то M2322K 168 Mbytes $\sigma \epsilon$ غ́धı ठiakous．H $\mu \in$ тафорá $\delta \in \delta o \mu \dot{\epsilon} v \omega v$ vivetai $\mu \in \rho u \Theta \mu$ ó 1，2 Mbytes avá $\delta \in u t \in \rho \dot{\lambda} \lambda \in \Pi т о$ ．Kaı ta δ u̇o
 пропүцє̇vク texvoגoyia nou arлопоוєі тоus סıáфороus $\mu \eta$ Xaviouou̇s，€vய̈ ra олок $\lambda \eta \rho \omega \mu \dot{\text { èva }}$ кuк $\lambda \dot{\omega} \mu a t a$ $\epsilon \mu \pi$ обi弓ouv ta $\lambda \dot{a} \Theta \eta$ otףv aváyvшờ пои пооє́рхоитаı aпȯ $\epsilon \xi \omega T \in$ рікойs $\eta \lambda \epsilon$ ктрікойs Өopüßous．

Té入os，via no入ú $\mu \in y a \dot{\lambda} \lambda \in \varsigma$ anaitñoधıs，ónws eivaı via пара́бєіүна оі єфариоүє́s пои хрŋбıиопоюйv по入и̇
 unápxouv ta disk drives M2351A каı M2351AF $\mu \epsilon$ xwpףтіко́тŋта 474 Mbytes то каӨ̇̇va．

H Fujitsu ıбхирі弓etaı о́тı ò λa ths ra disk－drives μ ropoúv va $\lambda \in i t o u p y o u ́ v ~$ χ wpis $\beta \lambda \dot{a} \beta \eta$ náv ω anó 10.000 ẅpes．

Пєрıббо́тєрєऽ плпрофорієऽ μ порєітє va па̇рєтє aாó т η v

Datamatica

A．Knфıoias 124
$\mathrm{T} \eta \lambda: 6911413$

THE GREAT COMMUNICATOR： ENA乏 IBM PC／AT COMPATIBLE

H Stearns mapouqiaбє є̇vav véo，бu $\mu \beta$ ато̇ $\mu \epsilon$ тоv IBM PC／AT uпоגоүібтウ்，TOV Great Communicator．
Характпрıотıкó тои，єivaı оı auそпnėves סuvatótఇtes єाıкoıvwvias $\mu \in T a \xi u ̈ ~ T \omega v$
 $\epsilon \xi \cup \Pi \eta \rho \in \tau \in і$.

H карбıả тои umo入оүıотท் eivaı o $\delta \in к а \in \xi$ á μ пाıто
 ins Intel，nou μ ппореі va
 MHz ．Проаıрєтıка́ μ порєі va δ ех $Ө$ єі то $\mu \mathrm{a} Ө$ П̆ μ атıко் ouv $\in \pi \epsilon \xi \in \rho y a \sigma T \eta \dot{7}$ 80287．H ROM，yia tqv єккivךoŋ tou бuotijuatos kaı та autodiayvwơtikà e λ è Y Xou
 Kbytes，$\in \mathrm{v} \dot{\omega} \eta$ RAM 256 ض 512 Kbytes．Yrápxouv єாтá kavádıa yıa á $\mu \in \sigma \eta$ пробті் $\lambda a \sigma \eta$ бтп $\mu v \eta \dot{\mu} \boldsymbol{\eta}$ каı ролӧі／$\eta \mu \epsilon \rho о \lambda$ о́үıо $\mu \epsilon$ umoбтท்pıぞๆ μ matapias．Ta floppy disk drives μ mopei va eivaı èva ñ ठủo．To kaӨ̇̇va
 5，25＂хшрŋтіко́тптая 1,2 Mbytes．Проаıрєтікд unápxeI à $\lambda \lambda 0$ éva floppy disk drive twv 360 Kbytes，návta 5，25＂．
 ठібкои，μ пторєі va є́хєı хшрптіко́тпта 10， 20 ท் 40 Mbytes．Oı $Ө$ úpes
 бuんßatés $\mu \in$ autés tou IBM PC／AT．H o日óvn єivaı $\mu \circ v o ̇ x \rho \omega \mu \eta, \tau \omega v 12^{\prime \prime}, \epsilon v \dot{\omega}$ проаıрєтькд μ торєі va
 artikóvion yivetai $\sigma \in 26$ vраниеєs twv 80
 סuvatótŋta yıa reverse video，blink，bold kaı underline．To плضктродо́yı，
 опоiwv ta 16 eivaı numeric， ta 11 yia tis kivウ்бeis tou ठроиє́а каı та 10 үıа проура $\mu \mu а т ı \zeta \dot{\jmath} \mu \in \mathrm{v} \in \varsigma$ єוסוке̇ऽ λ єітоирүієऽ．H єпוкоוvшvia $\mu \epsilon$ $\dot{a} \lambda \lambda \alpha$ бибтŋ் $\mu a t a, ~ ү i v \in \tau a ı$ $\mu \epsilon ̇ \sigma \omega$ evós kava入ıoủ RS－ 232C $\mu \in \rho \cup Ө \mu$ ó 75 baud－ 19，2 Kbaud kaı $\mu \notin \sigma \omega$ €vós mapá $1 \lambda \eta \lambda$ ou interface centronics．

Гıа пєрıббо்тєрєऽ $\pi \lambda \eta \rho \circ ф о \rho і є \varsigma$ ：

Kronos Electronics
Meooyeiwv 317
Tп入．802－9468

véa neoioivia

ЕПАГГЕЛМАТІКОI

 ЕКТҮП®TEट АПО TH HERMES

H oelpá HERMES PC－ PRINTERS，aпотє λ eital anó
 єктuп ω tés поu éxouv
 поӧтптая єктüாшoŋ word－ processing，graphics кaı $\delta \epsilon \delta \delta \mu \in ̇ v \omega v$ ．Tunüvouv $\mu \epsilon$ нйтра 9X12 dots характท̇рєs Data кaı 18×36 dots xapakтñpєs Word Processing Quality．
Kà $\theta \in$ eкtuாwtís ths
 оєт Характท்puv yia Word Processing Quality（Elite－ 10／12）kal סúo oєt yia єктünwon Data（Data－ 10／12）．Enions，بпореі va ठお̈ठel condensed，bold， double height kaı underlined характйрєs．
 апо் тоus 132 характп்реs （ 10 cpi ）kaı фӨävé $\mu \mathrm{\mu} \mathrm{E}$ Xpı
tous 237 avȧ үраицท்（18 срi）．H тaxütทta єктünwons． поıкілєı avä入оуа $\mu \in$ то ноvté入o．Пávtws，ta μ оvté̇a PC－PRINTER 3 кaı PC－PRINTER 4 tumüvouv $\mu \epsilon$ тахÜтทта 400 cps xapakтท̇pes Data kaı 100 cps характі்рєऽ поוо்тптая Word Processing．

O PC－PRINTER 3，eival $\sigma u \mu \beta$ atós $\mu \in$ tous μ оvóxpwhous каı о PC－ PRINTER $4 \mu \in$ TOUS ÈYXP mpoopi弓ovtaı via tov IBM PC．

Пєрібботтєрєs плпрофорієs yıa tous єкTumwtés HERMES $\mu \pi о р є і т є$ va пápєтє aпó тŋv： DATAMEDIA
ミapavtanópou \＆Фwкаias Tп入． 4819815

8810／25：O П́РОइএПIKO乏 YПO＾OГIइTH乏 TH乏．NIXDORF

H Nixdorf Computer A．G．， бu \quad п $\lambda \eta \rho \dot{\omega} v \in 1 ~ т \eta v ~ ү к д ̉ \mu a ~$ twV проїóvtwv TnS $\mu \in T \eta v$ пароибiaøn тои transportable пробштıкой uпо入оүібти் 8810／25，о опоios єvow μ atüveı éva
$\theta \in \rho \mu$ ико́ єктипштந்．
H кєvtpiкท் μ оvá δa
$\epsilon \pi \in \xi \in \rho$ yarias tou 8810／25 eivaı o yvwotós єாє $\ddagger \in \rho$ риaotn่s 8088 Tns INTEL，єvய் проaıрєтıка̇ $\mu \pi о р є і$ va пробтєӨєі о

 8087．H $\mu v \eta ் \mu \eta$ RAM ÉX $\in I$ xшрŋ̣тіко́тпта 256 Kbytes， a入入á $\mu \epsilon \tau \eta v$ пробӨウ்кп
 256 К $\mu п о р є і ~ v a$ єпєктаӨєі μ е́хрı та 640 Kbytes．

0 8810／25 парáyєтaı $\sigma \epsilon$ ठúo єкסóvєıs．H прӥтп $\pi \in \rho ı \lambda a \mu \beta a \dot{v} \in ⿺$ ठu̇o floppy disk drives nou סе́Xovtaı סıбке̇теऽ twv 5 1／4＂хшрұтіко்тптая 360 Kbytes η к $\alpha \theta \in \mu$ ıa่．H $\delta \in \dot{U} T \epsilon \rho \eta \dot{\epsilon} \kappa \delta$ оơ
 drive twv 360 Kbytes kaı Éva hard disk drive twv 10 Mbytes．

H oӨóvn tou ouotínatos， eivaı єvowhatwhèvn ornv кúpıa μ ováda．＇Exeı iך סuvatótףta va arteıkovi弓eı μ оvóxp $\omega \mu \in \varsigma$ каı є̇ єxp $\omega \mu \in \varsigma$ ทрафıкє́s парабтȧбєıS $\mu \epsilon$ біакріто́тұта 640X200 pixels kaı 320×200 pixels avtigroixa．H areıkȯvion tou кєıце̇vou yivetar $\sigma \in 25$ ypaupés $T \omega v$ 80 xарактп்р ωv ท் єva入入актікад $\sigma \in 25$ үрадиеєе т $\omega v 40$ xapaкт $\grave{\rho} \rho \omega v$ ．

То плпкктроло́үıo，пєріє́хєı
 10 єivaı пооүра μ атіъ $\grave{\rho} \mu \in \mathrm{va}$ ， 10 арıӨиптıка́ каı 14

 eivaı єvowuatwhèvos ornv кúpıa μ ováda，єктuாய்vєı 80 ура $\mu \mu \epsilon$ т twv 132 xapakтท்pwv．ExeI in סuvatótŋta va kàveı hard copy ins o日óvns，va єктumüvєı μ òvo autá поu плПктродоүoúvtaı kaı va aпеvєруопоוєітаі $\dot{\omega} \sigma t \in ~ v a ~$
 ипо入оуıбтウ் $\mu \epsilon \epsilon \xi \omega \tau \in \rho ı к о ் ~$ єктUTLTர்．

О 8810／25 хрпбıиопоєєі
 DOS ウ̀ то PC－DOS，єvய் μ порєі va хрŋбıцопоıท்бєı kaı to CONCURRENT DOS 3．11．Eivaı $\sigma u \mu \beta$ atós $\mu \epsilon$ tov IBM PC каı μ порєі va тр $\dot{\xi} \xi \in$
 to Multiplan，Wordstar， Lotus 1－2－3，к．．．

Пєрібоо́тєрєऽ плпрофоріеऽ via то 8810／25 μ порєітє va

Nixdorf Computer A．E．
＾．इuyypoú \＆$\Sigma k \rho a 1$ ，
Ka入入ı $\begin{gathered}\text { © } \alpha, ~ т \eta \lambda . ~ \\ 9595112\end{gathered}$

GRID：O EПAГГE＾MATIKO乏 ФОРНТОЕ ҮПO＾OГİTH乏

O GRID Compass，tivaı
Évas плṅpŋs форпто́s
 пробшпико́тŋта каı аछ̆о்лоуа характпріотіка̇．Tа кирıо́тєра aпó autá єivaı to нікро́ ßápos，η

 фибоа入i $\delta \omega \mathrm{v}, ~ \eta$ $\eta \lambda \in к т \rho о ф \omega \sigma ф о \rho і к \grave{~ o \theta o ́ v \eta}$ каı to evowhatw μ evo modem．

乏av CPU tou GRID， хрŋблиопоєітаı о $\delta \in к а \in \xi \dot{\mathrm{a}} \mu \boldsymbol{\pi}$ ітоऽ $\in \pi \in \xi \in$ руаотท்s 8086，о опоіоs ouvodeu̇єтaı апо́ то μ аӨпиатіко̇ बuvєாє $\xi \in$ рүáтர் 8087 ．H $\mu v \eta \dot{\mu} \eta$ ROM Е̇X хшрŋтіко́тпта 16 Kbytes кaı η RAM 256 Kbytes．

O Grid $\delta \in v$ єvowhatüvei disk drives．OI xpウ்otes ó $\mu \omega \varsigma$ $\delta \in \mathrm{V}$ пре̇пеı va avŋouxoủv， vıati unápxєı $\mu v \grave{\mu} \mu \eta$
 хшрףтіко́тŋта 384 Kbytes． Autí 入eitoupyei oav disk drive $\mu \in$ тп ठıафорá о́тı ката入ацßảvєı 入ıүо́тєро хш̈ро，пра́үна апараітпто yıa èvav форŋтó uno入oyıatף்．

 форпто́ floppy disk drive Twv 360 Kbytes，evய்
 бкגпрои̇ סiokou Winchester t $\omega \mathrm{v} 10$ Mbytes．

H oӨòvn rou GRID eivaı $\eta \lambda \epsilon к т \rho о ф \omega \sigma ф о \rho ı к \grave{,} \epsilon п і п \epsilon \delta \eta$ twv 6＂．Ateikovi弓eı 24 रра $\mu \mu \epsilon ̇ \varsigma ~ т \omega v ~ 80 ~ х а р а к т п ் р \omega v ~$ evய̈ η ठіакріто́тпта тшv graphics eival 320X400 pixels．To плпкктродо́yı апотєлєітаı anỏ 57 плйктра． O GRID пробфє́ $\rho \in$ таı үıa $\mu \in$ тафора́ $\mu \epsilon ̇ \sigma \omega$ т $\eta \lambda \in \Phi \omega \mathrm{vik} \dot{\omega} v$ v $\rho a \mu \mu \dot{\mathrm{u}} \mathrm{v}$ кєן $\mu \in \mathrm{v} \omega \mathrm{v}$ ，graphics，aкȯ $\mu \mathrm{a}$

kaı фwvク̇s．Evowhatüveı ̇̀va modem tuv 1200， 1300 baud каı проаıрєтıка бuvס́́єtaı $\mu \in$ акоиотікó пои
 $\sigma \epsilon$ тпौє̇ф ω vo（auto－dial， auto－answer）．$M \in \Pi \eta$ Xprjon tou кaтá $\lambda \lambda \eta \lambda$ ou software o Grid μ порєі va éxєı
 mainframe，mini kaı micro．

Aпó $\pi \lambda \in u \rho a \dot{̧}$ software， umápxouv паке̇та пои éxouv avantux θ ei єıठıкả үıa tov GRID ón ω s то GRIDPlan （spreadsheet），то GंRIDPlot （Business Graphics）， GRIDFile（Database）， GRIDWrite（Text Editor）k．． ． Aкó η ，otov Grid tóx үvworá пакєєта тои MS－DOS （Multiplan，WordStar，dBase II，Lotus 1－2－3 к．a．．）．To $\beta \dot{a} p o s ~ t o u ~ G r i d ~ \epsilon i v a ı ~ \mu o ́ v o ~$
 tou $36 \times 29 \times 5 \mathrm{~cm}$ ．

Пєріббо்тєрєऽ плпрофорієऽ μ порєітє va па́рєтє апо் тףv：

TECH WARE
 T $\eta \lambda 1.7240134$

XEN：Σ YMBATO TAXY乏 KAI ФI＾IKOE．．

H Apricot napouqiace tov uno入оyıoтウ̇ Apricot XEN nou

 ayopás tou IBM PC．

Kúpıo xарактпрıятıкó tou XEN，єivaı o $\epsilon \pi \epsilon \xi \in \rho$ рáatís 80286，пои тре̇хєı бта 7，5 MHz ，єvய̈ єivaı $\delta ı a \theta \dot{\epsilon} \sigma ı \mu \circ S$ каı о $\mu a Ө \eta \mu a t ı$ ко́s ouvєா $\epsilon \xi \in$ рүaỡìs 80287.
Tqv тахйтпta тои uno入ovıฮтウ̇ auそảvouv т $\in \sigma \sigma \in p a \quad \in v \sigma \omega \mu a \tau \omega \mu \epsilon \overline{\mathrm{v}} \mathrm{va}$ каvà入ıa DMA пои μ поороúv
 $\epsilon \Pi$ т்．

O Xen mapáyєtaı $\sigma \in \delta$ ঠ̇o ßađ̈кá configuration．To прйто Е̇XєI $\mu v \dot{\jmath} \mu \eta$ RAM 512 Kbytes kaı סu̇o Microfloppy drives twv 3，5＂ xшрŋтіко்тұтаs 720 Kbytes то каӨ̇̇va．To $\delta \in \cup ̇ t \in \rho о$ configuration $\pi \in \rho ı \lambda a \mu \beta a \dot{v} \in I$ $\mu v \eta \dot{\mu} \eta$ RAM tou 1 Mbyte， Ėva Microfloppy disk drive тшv 3，5＂Xшрŋтіко́тұтаs 720 Kbytes kaı $\mu i a \mu$ ová δa бк入nрои̉ סiokou Winchester тшv 3，5＂，$\mu \in \chi \omega \rho \eta$ тіко́тұта 20 Mbytes．Kaı otis סủo
 EPROM Twv 64 Kbytes．

Апó плєupás oӨóvns，o xpウ்otns μ поорєi va $\delta ı a \lambda \grave{\epsilon} \xi \in!$ ̇̇va anó ta révte סıaӨ́̇oııua monitors．Ynápxouv μ оvoxpшرатіка̇ monitors tuv 12＂${ }^{\prime \prime} 9^{\prime \prime} \mu \epsilon$ ঠıакріто́тпта 800×400
 $\mu \epsilon$ ठіакріто́тпта 640X350 $\sigma \epsilon$ 16 хрйцата（ $є$ пі бuvó̀оu 64） $\mathfrak{\text { n }} 640 \times 200$ $\sigma \in 4$ xpüцата（ ϵ пi ouvȯ\ou 16）．

O Xen，$\delta i a \theta \dot{\epsilon} \tau \in \mathrm{I} \mu \mathrm{i} a$ бєıрıаки் Өúpa RS－232 C （19，2 Kbaud）kaı μ ia napd $\lambda \lambda \eta \lambda \eta$ centronics． Мпорєi va $\sigma u v \delta \in \theta$ єi $\mu \in$ тоия mainframe uno入оүібтє́s ths

IBM，ins DEC kaı tns ICL．H $\mu \in \tau а ф о \rho \dot{a}$ twv apxєiшv прауиатопоєітаı $\mu \in \mathrm{T}$ хрர்оп тои проүра́ $\mu \mu$ атоs ASYNC пои хорпүєітаı μ а३і $\mu \in$ tov Xen．

To software nou ouvoठєu̇єı tov umoגоүıбтர்，
 бüornua MS－DOS 3，IBM ROM BIOS Emulator，GW Basic Interpreter kaı èva фіАıкотато user－interface $\mu \epsilon$ парáӨupa，єіко̇vєऽ к $\lambda п$ ．，то MS－Windows．To MS－ Windows $\pi \in \rho ı \lambda a \mu \beta a \dot{v e l}$ kaı
 utilities：MS－Write，MS－ Paint，Calendar，Card Index， Notepad，Calculator，Clock， VT 1000 Emulator kai Reversi．

Н ои μ ßато́тптатои Xen $\mu \epsilon$

 floppy disk drive twv 5，25＂ пои $\delta i v \in т а ı ~ п р о а ı р є т і к \dot{~}$.
Σ tis apxés tou $\epsilon ா \dot{\mu} \mu \in \mathrm{vou}$ Xpóvou θ a єivaı є̇тoıцク $\mu \mathrm{i}$ a кápta $\mu \in$ т η v опоіа о Xen Өа μ порєі va uпобтпрізєі то Xenix каı va $\mu \in$ татрапєі $\sigma \in \sigma$ u̇otn μ a multi－user
 X teot taxütпtas nou divei η Apricot，$\theta \dot{\text { élouv tov Xen }}$ по入ú тахйтєро то́бо aпȯ тоv PC óvo каı anò tov AT．
 ठієкठıкєі тітлоus ои μ вато́тптаs каı μ е тоия ठúo autoús uno入oүiotés．

Перібоо́тєрєs плпрофорієऽ yıa tov Apricot Xen μ порєітє va падрєтє апо் T \boldsymbol{T} v：

> Apricot Hellas
> Міхалакопои்入ou 125
> Tп入． 7793411

EISOFTwane

ПРОГРАММАТА ПОАITIKএN MHXANIK 2 N

η тoıó $\tau \eta \tau \alpha$ 兀ov
 $\pi \rho о \gamma \rho а ̈ \mu \mu а \tau о \varsigma$
 Sïvel $\alpha \sigma \varphi \dot{\lambda} \lambda \varepsilon \imath a$
 $\sigma \tau \eta \nu$
 $\kappa \alpha \tau \alpha \sigma \kappa \varepsilon v \grave{\eta}$

vża npoiotovta

E「XP＠MOE PLOTTER AחO THN VERSATEC

H exalpia Versatec
Electronics Limited，
 Plotter 24＂．O véos Plotter μ нореі va хрпбıиопоıп $Ө$ єі $\sigma \epsilon$ ठıáфорєऽ єфариоує́s， CAE／CAD，ү $\in \omega \varnothing$ Јбıкท்s，
 oxєठiaons к．a．＇ExєI taxütnta $\sigma x \in$ סiaans μ éxpı 1 ivtoa／sec кaı пuкvȯtŋta ypaøris 200 dots／iviaa． Mпорєi va парȧyєı ̇̇yxpw
 харті $\dot{\eta}$ film，$\mu \notin \sigma a ~ \sigma \epsilon 5,5$ $\lambda \in \Pi T$ à．Av to oxédıo єivaı
 oxe

O véos Plotter
 по $\lambda \lambda a n \lambda \dot{\omega} v$ п $\epsilon \rho a \sigma \mu a \dot{T} \omega v$ TnS Versatec．＇Etoı，yıa va парахӨєі Е̇va є̀ $ү x \rho \omega \mu$ о бхє̇ठıo，aпaıтоüvtaı
 опоіа ектипш́vovtaı та хрш் μ ата μ aúpo，kuavó， порфиро́ каı кітрıvo．Ако̇иך， －véos Plotter xpクoıиопоєєі in $\mu \dot{\mu} \dot{\epsilon}$ обо тои П入ектробтатікой бхєठıабцой，ката̇ тпи опоіа

проүра $\mu \mu а т і \sigma \mu є ̇ v \eta ~ т а ̇ \sigma \eta ~$
 пuкvய̈v aкiסwv пои ßріокетаı отпv акіиптп кєфалй урачінатоऽ．Mє
 ঠпиıoupyoúv єпı৯ектіка́ ото $\mu \dot{\epsilon} \sigma \circ$ €үурафウ்s（харті $\mathfrak{\eta}$ film） η пектробтатіка́ отіүната
 ouvèxeıa，то харті $\dot{\eta}$ то film ßапті弓єтаı $\sigma \in$ uүро́ є μ фаvıoтŋ̇ каı є́тоı пара́yєtaı èva μ óvıцо бхє́ठı。．
$\Sigma u ̈ \mu \phi \omega v a \mu \epsilon T \eta v$ ároч η tou к．Dale Richmond， $\Delta i \in u$ Uuvtoú Marketing ins Versatec п $\lambda \epsilon$ єоvєкт $\dot{\mu} \mu$ тта тои vєou Plotter єivaı to μ ıкро́

 ко̇́тtos．

O vèos Plotter，kaӨüs kaı ò λa та à $\lambda \lambda a$ проїóvta tns Versatec npowӨoúvtaı otnv E入入áठa aпȯ т $\ddagger v$ єtaıpia K． KAPATIANNH乏 AEBNE（T η 入． 3237731），ๆ опоіа пробФє́рєІ п入n்рп uпоoтท்pıそŋ каı texvikn் ка́入uчŋ．

MINI MARK4：NEOE

 COMPUTER AMO THN POINT 4H POINT 4，η onoia ws

 DATAMEDIA A．E．， avaкоіvшбє про́бфата тпv пробӨŋ்kn tou véou MINI COMPUTER MARK4 σ TI $\sigma \in 1$ pá MARK2，MARK3， MARK5 KaI MARK9．

To oủgrnua MARK4，єivaı каı autó èva Xaرŋ入ou̇ kóotous MULTI USER MINI COMPUTER，по $\lambda \dot{u} \mu \in ү$ वंdns

 3.000 .000 EvTO ${ }^{\text {euv }}$ TO
 характпріоттıка̇：
1．Kєvt MBytes．
2．WINCHESTER DISK
CAPACITY $\mu \dot{\text { éxpI }} 258$ KBytes
3．Ме்хрı 16 пєрІфєрєıака́ （oӨȯves kaı єктuпtwtés）．
4．STREAMER Twv 45 Mbytes yıa Back Up．

5．\triangle uvatótŋta про́a $\theta \in$ tou drive Yıa סıбкલ̇tes 5.25 ＂．

O MARK4，xpףбıиопоєі то λ еітоирүікó бúбтпйа IRIS，то опоіо व் $\lambda \lambda \omega \sigma$ тє xрпбıиопоьойv каı ó入oı oı Нлектроviкоі Үполоүібте́s tins POINT 4．＇EtoI，Éx $\in \mathrm{I}$ in סuvatótпta va
 $€$ €ариоүє́s пои є́хєı
 η Datamedia $\sigma \in 40$ ouotinuata POINT 4 T ηv teגєutaia סıєtia otov

Пєріббо́тєрєऽ плпрофорієऽ：

DATAMEDIA A．E．
ミapavtanó $\rho o u$, Фwкаias \＆ Aıvivns，Пeipaiás Tп入．4819815－9

ПРОГРАММАТА＾OГİTIKH乏 ГIA TON QL

H MICRO－TEC，ĖXEI
 єфариоүш̈v лоүіотіки்s пои tpéxouv otov QL．H oeipá апотє λ єітаı апо́ та проура́ $\mu \mu$ ата ПЕлATE АПОӨНКН каı EइO \triangle－ $E \equiv O \triangle A$ ．

Каı та тріа проүра́ $\mu \mu$ ата， тєрı́̇xouv є̇va ßađıкȯ menu $\mu \in$ тіS єmi入oүє́s：
Kataxшрウ்бєıs，Проßо入е́s каı Apxєia．Ка $\Theta \in \mu ı \dot{\alpha}$ aпó тіs
 $\delta \in u ̈ t \in \rho o ~ \mu \in$ voú nou каӨорі弓єı тіS парапє̇ра лєıтоupyies．H єmıлоүп் «Apxєia»，aoxo入єitaı μ óvo $\mu \epsilon$ $\theta \dot{\epsilon} \mu$ ата $\sigma \chi \in т і к а \dot{\alpha} \mu \in$ та $\mu \dot{\epsilon} \sigma a$ катахш̈pクōヶs．$\Delta \eta \lambda a \delta \dot{\eta}$ афорá in $\delta \eta \mu$ иоupyia apxtiwv $\mathfrak{\eta}$ avtiypȧфwv áфалеіаद，тіऽ $\mu \in$ тафоре̇ऽ $\lambda о ү а \rho ı a \sigma \mu \dot{\omega} v \sigma \in \dot{a} \lambda \lambda a$ apxєia к．$\dot{\text { a．}}$
 хрпбıиопоוєітаı үıа тіS обпүієऽ пои афорои̇v tous Xeipighoús nou пре̇пеi va yivouv．Xapaktпpiotikó twv проүра $\mu \mu a ̇ t \omega v$ ，єivaı то о́тı

apı θ uoús．Гia tov проббıорібно́ єvós отоıхєiou （ $\pi \in \lambda a \dot{\tau} \in \varsigma$ ，иАıко́）apкoúv ta при́та ура́ $\mu \mu$ ата тои ovóцато́s tou．Ta проүра́ μ ата，ठivouv ото хрர்oтŋ in סuvatótŋta va
 катахш̈pクoŋ ката́ тп סіа́ркєia TクS проßо入ṅs Tns．

Ká $\Theta \in п р о ́ ү \rho а \mu \mu а, ~$
хрпоıиопоוєі $\mu ı$ cartridge－ клєІбі пои прє́тєі апараітпта va β рібкєтаı ото Micro－drive 1．Av $\delta \in v$ ипа́рхєІ，то̇тє то про́үра $\mu \mu$ а єாІбтре்ФєІ ото кйріо menu．

Гіа перібоо́tєреS $\pi \lambda \eta \rho о ф о р і є \varsigma, ~ а п є \cup Ө u v \theta є i t \epsilon$ ото：

Micro－Tec
$\Gamma^{\prime} \Sigma \in \Pi \tau \epsilon \mu \beta$ piou 50
＇Tŋ入． 8836611

पIABATHPIO ГIA TO MEMMON

 TECHNOLAND
 Ypaب̧ounxavés

 kaı oíyoupo taşíi anó to napóv oto $\mu \varepsilon ̇ \lambda \lambda i o v$

OSBORNE 2500：DESKTOP PERSONAL COMPUTER

H OSBORNE COMPUTER CORPORATION，$\theta \dot{\text { édovtas kı }}$
 ins ayopás twv проошппкці้ uподоүıaтüv，oxєठiaбє каı סıaӨ́̇teI to סıкó ths desktop PC $\mu \in$ inv ovo μ aoia OSBORNE 2500.

O véos uno גоүIotñs，ónws каı оı пєрıббо்тєроı бтпv катпуоріа тои，хрпбוцопоєєі tov $\epsilon \pi \epsilon \xi \in$ рyaotin $8088 \mu \epsilon$ тaxu̇tทтa $4.77 \mathrm{MHz} . \mathrm{H}$ $\mu v \dot{\mu} \mu \eta$ RAM，apxi弓єı anó та 128 Kbytes kaı $\Phi Ө$ ávei μ éxpı ta 640 Kbytes，єv்் $\eta \mu v \grave{\mu} \mu$ ROM Є́XEI Xшрŋтіко́тףта 8

 $\dot{\text { à }} \lambda \lambda \eta \varsigma$ плакє̇таs．

H кєvtpıкท் μ оváda tou 2500 єvowhatüveı סủo disk drives סıா入ǹs ö $\psi \eta$ Һ каı пuкvȯtŋtas єyYpaфŕs．Oı סıбкє̇tes mou סéxovtaı єivaı Twv 5，25＂каı η ка $\theta \in \mu ı \dot{\alpha}$ éxєı xшрұтіко̇тұта 360 Kbytes． Ta disk drives μ mopou̇v va ypáчouv kaı va סıaßáøouv סıбкє̇tes tou IBM PC．Ако́ $\mu \eta$ ， uпȧ $\rho x \in ⿺$ xய̈роs yıa $\mu i a$ єпıплє̇оv（проаıрєтıкク்）
 10 ท் 20 Mbytes．

 mapped graphics $\mu \epsilon$ бıакріто்тұта 640×200 （ μ ovóxp $\omega \mu \mathrm{a}$ ）ґ̇ 320X400（ $\sigma \epsilon$ тє́бơє ρ а хр $\dot{\omega} \mu а т а)$ ．To плпктроло́үıо，апотєлєітаı
 83 плท்ктра，$\mu \in$ киріоттєро характпріатіко́ та LEDs ota плйктра CAPS LOCK каı NUM LOCK．

O Osborne 2500，eivaı ϵ €обіaб $\mu \dot{\epsilon} \mathrm{vo} \varsigma_{,} \mu \epsilon \mu \mathrm{ia}$
 єктuпwтí каı $\mu \epsilon \mu \mathrm{ia}$ бєıрıакп் RS－232．乏tп ßađıки் тои
 6 slots єпं̇ктаäns．To入еітоируікó бúбтпйа пои хрŋбıцополєі єivaı то MS－

DOS 2.11 кaı кatà tnv $\dot{\text { ámo }} \boldsymbol{\eta}$ TŋS OSBORNE π ápa по $\lambda \lambda \alpha \dot{\alpha} \delta \eta \mu о ф і \lambda \grave{~ п а к є ̇ т а, ~}$ ypa $\mu \mu \dot{\epsilon} v a$ via tov IBM PC， тре́XOUV Xwpis тропопоıท்бє！s otov 2500.

Пєрібдо́тєреs плпрофорієऽ Өа $\beta \rho є і т є ~ \sigma т \eta v$ avtimpoownia tns OSBORNE otqv E入Aáठa：

TEXNOMASTER E．П．E．
Boủגyapn 31，Meıpaıá 4115842

ПРОГРАММАТА XENIX АПО TH LOGICA

H Logica єivaı pia anȯ тIS $\mu \in ү a \lambda u ̈ t \in \rho \in \varsigma$ otnv Eupünn єтаıрієऽ пои єруá̧ovtaı $\sigma \epsilon$ $є ф а р \mu о ү є ́ s ~ т о и ~ X e n i x . ~$ Про́бфатоı карпоі тшv єруaбıїv ths єivaı ta паке̇та

Infomix－Database system， Lyrix－word processor， Multiplan worksheet kaı Level II ins Cobol．
To Infomix，eivaı èva ıбхиро́ пакє̇то Database пои

CITIZEN PRINTERS

Impressive Speed and flexibility Elegant and easy－to－use Outstanding price performance

pi入á otov uno入oүібти́ бac

по入ú кa入úтера aпó то пАПктро入óүı

EФAPMOГE乏 ME BAR CODES：

 ouoús $\kappa \lambda \pi$ ．）
 випорвuца́тшv，апоүрафء́¢）．
 рпtá твриатıкá）．
－ミuotińuata 入iavikóv п $\omega \lambda \eta \dot{\sigma} \sigma \varepsilon \omega \mathrm{V}$（POINT－OF－ SALES）
 QUE kaı VIDEO CLUBS．

DATAPEN．．．кaı aroktáte＊BAR CODE
 λ аүஸ́ oto SOFTWARE！

DATAPEN．．．o 甲Өŋvótع ouós avayvш́otn／anокшס́ıкопоıทтท் BAR CODE tņ ayooás aró tŋv Ita入ı－ kń DATALOGIC．

DATAPEN．．．ór ω кą káӨ\＆á $\lambda \lambda \eta$ $\varepsilon ф а \rho \mu о ү \eta ́ ~ \mu \varepsilon ~ B A R ~ C O D E ~ a n o ́ ~ t o u s ~$
 avtaүตviotıká．

10 022－0

AПOKAEIETIKOI ANTIПPOEQПOI－EIEATSГEIL

 AAKY Ω－ $\operatorname{A.K}$ ．ГAAIATEATOE EПEKоגокотрண́vn 9， 10562 AOHNA
Tn＾． 3226 016， 3238783 －T＾Е 215452

vèa npoiơvta

пробфє́рєІ апєріодрібто apı θ иo $\pi \epsilon \delta i \omega v$ kaı files，$\mu \epsilon$ סuvatótпта тропопоіпŋ̃s
 $\delta \in \delta о \mu \dot{\varepsilon} v \omega v$ ако̇ μ а каı о̀таv пєріє́хєı data，єктєтане்vous ти̇пous $\delta \in \delta$ о $\mu \in \mathrm{v} \omega \mathrm{v}$ ，ón
DATE，MONEY，
COMPOSITE，סuvatótŋta $\delta \eta \mu ı o u p y i a s ~ \mu \in v o u ̉, ~ \pi \epsilon ̇ \rho a ~$ anó ta interactive $\mu \in \operatorname{voú~tou~}$ катабкєиaбтп்，multi－user $a \sigma \phi \dot{a} \lambda \in ı a \quad T \omega v \delta \in \delta o \mu \notin v \omega v$ кaı ઘ̀ $\lambda \lambda a$ ．$\Sigma a v$ пакє̇то，єivaı èva
 opyávwons kaı סıaxeipıans плпроофоріш̈v，пои тре̇хєІ бта пєрıббо́тєра Xenix бuбтグцата．

To Lyrix eivaı évas фı入ıкỏs $\epsilon \pi \epsilon \xi \in$ руaöǹs кєן $\mu \in \mathfrak{v o u}$ ，пои סivei tn סuvatótŋтa uпоүрá $\mu \mu ı \sigma \eta s, ~ a ̀ v \omega ~ к a ı ~ к a ̉ t \omega ~$

 Keywords，$\mu \in i \xi \eta ~ K \in!\mu \in \dot{v} \omega v$ ， фориарібцатоs кєІцє̇vou，

парєцßо入n்s ท் ठıаүрафர்s

 user－friendly $\pi \in \rho ı ß \dot{a} \lambda \lambda о v$ ．

To Multiplan eivaı проооноiwan тои $\delta \eta \mu$ офілои́s Multiplan tns Microsoft $\sigma \in$ Xenix．Mapéx $\in ı$ ó\es tis סuvatótŋtes tou Microsoft Multiplan $\sigma \epsilon$ $\epsilon \pi i \pi \epsilon \delta \circ$ multi－tasking．

 anó éva worksheets tautóxpova．

T＇̇̀
 autís y $\lambda \dot{\omega} \sigma \sigma a s$ $\sigma \epsilon$ mainframe ϵ піп $\epsilon \delta о$ ，пои uாєркали்ாтєI ta ANSI standards．H Level II Cobol，
 Compact кaı тŋv High－ Performance．Kaı ol סúo
 по入ú ка入á development tools FORMS－2 yia Tnv

єvєpyท̇ ouvepyaóia VDU каı compiler kaı ANIMATOR yıa to debugging twv nnyaiwv проүра $\mu \mu \dot{т} т \omega \mathrm{v}$ ．
Ta пакє̇та тŋs Logica סıati θ еvtaı aпó tŋv：

Computer Systems Ltd． Г．Г ρ umáp 147,
 T $\eta \lambda$ ： 9523100
Telex 218313 STD－GR

NEOI EKTYח®TE乏 AПO THN OKIDATA

H ATKO COMPUTER

SYSTEMS，ĖYIve

апоклєібтіко́s єібаушүє́as twV єктuпlutüv ths eraıpias OKIDATA úvTєpa anȯ бицфшvia пои ипоүрȧфтпкє
$\mu \in T a \xi u ̉ ~ T \omega v ~ \delta u ́ o ~ \in T a ı p ı u ̈ v . ~$
 tous ektunlwtés Microline ML 192，Microline ML 193, Microline 80 kaı OKI 2410 пои апотє入оúv та

H Technomaster avakoıvต̇veı tis api̧eıs ठu̇o vغ்فv μ оvt $\dot{\lambda} \lambda \omega \mathrm{v}$ Tņ Osborne：

 $\mu v \eta \dot{\mu} \eta$（ $\varepsilon п \varepsilon к т$ áбıи ota 526）， 2 ultra－thin disk

 нопоєві то MS－DOS 2．11．
O Osborne PC－2500．H anávtnon ThS Osborne

 2 disk drives $\mathrm{T} \omega \mathrm{v} 360 \mathrm{~K}$ ，овıрıакทं каı пара் $\lambda \lambda \eta \lambda \eta$
 puvon－ท் graphics card．＾عוтоирүіко́ MS－DOS
 проүра́ниата вчариоүஸ்v．

VIXEN

 $\mu a \tau ı к а ́ ~ \chi a \mu \eta \lambda \eta ́ ~ т ı \mu \eta ́ ~ к а ı ~ \delta ı a Ө \varepsilon ́ т \varepsilon ı: ~$
－＾عıтоирүıкó CP／M
 ge，SuperCalc 2，M Basic，Osboard（Graphics），Desolation， Turnkey каı：
Media Master（тоu عпıтрє́пєı va Xpךбıнопоเદí Data Disks

DPL COMPUTER SHOP

E $=O Y \Sigma I O \triangle O T H M E N O$ KENTPO $\Pi \Omega \wedge H \Sigma E \Omega N$ SPECTRUM

METANE天 EYKOAIES ПNHPQMH玉							
MICROS							
ZX SPECTRUM	8.500	ПРОК／$\wedge \mathrm{H}$	kaı	3	\triangle OEEIL	АПО	5.500
ZX SPECTRUM＋	14.000	»	＂	3	＂	＂	7.000
SINCLAIR QL Hovoxpwhatikó	28.000	＂	＂	5	＂	＂	8.000
AMSTRAD CPC 464	29.500	＂	＂	4	＂	＂	9.500
غухршно							
AMSTRAD CPC 464 $\boldsymbol{\mu}$ оуохрюнатіко́	49.000	＂	＂	5	＂	＂	10.000
AMSTRAD CPC－6128	44.000	＂	＂	5	＂	＂	11.000
COMMODORE 128	38.000	＂	＂	4	＂	＂	11.700
COMMODORE－64	21.000	＂	＂	4	＂	＂	8.500
CE－TEC MPC 80 MSX	18.500	＂	＂	4	＂	＂	6.500

O＠ONE

SANYO DM 6112 ПPAミINH 13.500 SANYO CD 3195 A EГXP Ω MH 29.500

EKTYП』TE玉

EPSON LX80
STAR G 10

SEIKOSHA GP 500 AS
SEIKOSHA GP 100 VS
SEIKOSHA GP 50 S
19.500

SEIKOSHA GP 50 A
SEIKOSHA SP 800
DISK DRIVES
COMMODORE 1541
CE－TE DPF 550 MSX
CE－TEC DPQ 280 MSX
KAETOФ』NA
SANYO DR 202
COMMODORE $1530 \quad-\quad 13.000$
MAGNAZONIC DR $64 \quad 7.900$

ПЕРIФEPEIAKA

SPECTRUM ZX－EXPANSION
ПЛНКТРОЛОГIO SAGA 1
13.000

JOYSTICK QUICK SHOT II 3.800
INTERFACE KEMPSTON
COMPATIBLE 4.500
INTERFACE SPECTRUM
ПРОГРАММАТIZOMENO
KАЕЕTOఆHKE \llcorner АПО
$\triangle \mathrm{I} \Sigma K E T O \Theta H K E \Sigma$ АПО

ANA 1 』 $\Sigma I M A$

$\triangle \mathrm{I} \Sigma \mathrm{KETE} \Sigma$ АПО $390 \triangle \mathrm{PX}$
ME \wedge ANOTAINIE Σ
CARTRIDGES ГIA ZX－MDRIVE
XAPTI EKTYП $\Omega \Sigma \mathrm{H} \Sigma$

$\underset{»}{\text { ПPOK/ } \wedge H}$	кরı	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\Delta \mathrm{O} \Sigma \mathrm{EI} \Sigma$	АПО	$\begin{array}{r} 6.500 \\ 10.000 \end{array}$
ПРОК／$\wedge \mathrm{H}$	кaı	3	$\triangle O \Sigma E I \Sigma$	АПО	
»	＂		＂	＂	
＂	＂	3	＂	＂	7.000
＂	＂	3	＂	＂	8.000
＂	＂	3	＂	＂	5.500
＂	＂	2	＂	＂	5.500
＂	＂	3	＂	＂	11.000
ПРОК／＾H	kaı	4	$\triangle \mathrm{O} E \mathrm{EI} \Sigma$	АПО	8.600
»	»	4	》	»	7.500
＂		3			7.000

véa npoitoivza

te OKIDATA．

O ML 192 тurய்veı $\sigma \in \delta \dot{\text { u }}$ катєuӨüvбєıs，$\mu \in$ тахи̇тпта 160 cps （draft mode）， 80 cps（emphasized kaı enchanced mode）$\dot{\text { n }} 33$ cps （letter quality mode）．To $\pi \lambda a ́ \tau о \varsigma ~ у \rho a ф \dot{ŋ} \varsigma, ~ \epsilon \xi а \rho т а \dot{т а । ~}$ anó то ЄíסOS TwV Xарактウ̇рwv каı єivaı 80 otij $\lambda \in \varsigma$ yIa standard характท்рєऽ， 137 ，үıа би $\mu \pi \iota \in \sigma \mu \dot{\text { vous каı }} 68$ үıa
 Н ঠıакріто́тпта тшv Xapaктウ่рwv єivaı 9X9 dots $\sigma \epsilon$ draft mode，$\dot{\eta} 17 \times 17 \sigma \epsilon$ letter quality mode．

O ML 192，$\delta \dot{\epsilon} \chi \in T a ı$ downloadable характض்рєऽ kaı єvowhatüveı ̇̇va buffer Twv 8 Kbytes， $9 \sigma \in T$ xapaктク் $\rho \omega$ к каı 132 характウ்рєऽ IBM． Проофє́рєта। єітє $\mu \in \dot{\epsilon} v a$ пара́ $\lambda \lambda \eta \lambda o$（centronics）
interface，$\epsilon i \tau \epsilon \mu \epsilon \dot{\epsilon} \mathrm{Va}$ бєıрıако் RS－232 C．

O Microline ML 193，EXEI та idıа характпрıотıка $\mu \epsilon$ tov ML $192 \mu \epsilon \mu$ óv η ঠıафора́ то пла́тоऽ урафர்ऽ nou фтáveı tous 136 Xарактท்рєऽ standard $\mu \in \mathrm{y}$ Є Өous．

O Microline 84，тum山்veı $\mu \dot{x}$ X 136 кavoviкoú $\mu \in у \dot{\epsilon} \Theta$ оиऽ характウ்рєऽ $\sigma є$ ка́ $\Theta \in$ ураццர்，$\mu є$ тахи்тпта 200 характп்риv то $\delta \in \cup т \in \rho \dot{\lambda} \lambda \in ா$ то．Мпореі va тuпш்бєı кєінєvo поוо்тттаs a $\lambda \lambda \eta \lambda$ оурафіаऽ каı graphics． Evow α atüveı 9 sets xapaктท்pwv．

TÉ入os，o OKI 2410, апотє $є$ і то «ßари் пироßо入ıко̇» тпS єтаıріая，$\mu \in$ ки́pıa характךрıотıка́ тпv тахútŋта тwv 350
характท̇рwv то
 үрафர்ร 136 xapaктท்р 1 v．

H OKIDATA，σ xupi弓eraı óti ol ektunntés ths $\delta \in \mathrm{V}$ Eivaı $Ө$ ориß $\dot{\omega} \delta \in І$ каı о́тı пробфє́роиv характпрібтікд் nou ठúбкола β рібкоитаı $\sigma \epsilon$ à̀入ous єктuாmiés．H ATKO COMPUTER SYSTEMS θa סıaӨं̇teI TOUS EKTUTWTĖS OKIDATA $\mu \dot{\epsilon} \sigma \omega$ Evȯs єктєtapévou סıктúou dealers

каı катабтп μ át ωv п $\dot{\omega} \lambda \eta \sigma \eta ร$ uполоүıотї́ каı пєріфєрєІакйv．

Гіа пєріббо்т $\epsilon \in \varsigma$ плпрофорієऽ апєєӨuvӨєітє oTnv：

ATKO COMPUTER SYSTEMS
Meooyeiwv 74，A日்̇va
7783659－7785950

NEO ПAKETO TH乏 GIGATRONICS ГIA TON APPLE Ile

H Gigatronics ÉXeI avartiù ξ_{ϵ} モ̇va véo ＂о入окגпршиє́vo＂пакє́то $\mu \epsilon$ inv ovo $\mu \mathrm{a}$ ia Foundation （ $\theta \in \mu \dot{\epsilon} \lambda ı$ о），то опоіо тре́ххєı otov uпо入оүıотท் Apple lle．
 проүра́ $\mu \boldsymbol{\mu}$ та үіа $\epsilon \pi \in \xi \in \rho$ үađia кєıルє̇vou，yıa
 Фù̀入а，yıa ßáбєIS
$\delta \epsilon \delta o \mu \epsilon \dot{v} \omega \mathrm{v}$ кaı vıa graphics． Фортїvєтаı бтоv ипо入оүıотท் $\mu \mathrm{a}$ Зі $\mu \in$ то біко́ tou λ еітоирүіко̇ би̇бтпйа，то
 anó tous avӨpünous ins Gigatronics．

To «Өє $\mu \dot{\epsilon} \lambda \prime$ o＂θa прошӨŋӨєі каı отпv а $\mu \epsilon \rho ı к а ̉ v і к \eta ~ а у о \rho a ́ ~ \mu \epsilon ~$ філобо弓ia va катактท்бєı є̀va

TתPA ENA NEO

COMPUTER SHOP KAI SOFTWARE HOUSE ETO AITIO
 0691－29464

О ПАNАГIQTH乏 MIXA＾OПOY＾O Σ
MAӨHMATIKO Σ ，ПPOГРАМMATI $\mathrm{TH} \Sigma$
－ANAへYTH乏 H／Y ME MEГAへH ПEIPA， ПР $\Omega Н$ ПР ПР•I• $\mathrm{CAMENO} \Sigma$ МНХАNОГРАФНГЕ $\Omega \Sigma$ МЕГА $\wedge H \Sigma$ ETAIPIA $\Sigma \Sigma A \Sigma \Pi$ ПO $\Sigma \Phi E P E I$ TI Σ YПHPE MHXANOГРАФНГHГ KAI KOMПIOYTEP Σ ME TO NEO KATA乏THMA TOY B．K Ω N／NOY 96 AIIION．

MELOREIQN 25915451 NEO WYXIKO THA． 6710482 TLX： 219250 RETE GR

 T $\eta \lambda$ ．67．10．482．

ПPOミФOPA $\triangle E K E M B P I O Y$

O日övec HANTAREX $12^{\prime \prime}$ ， 20.000 spx． $\mathrm{T} \eta \lambda .67 .10 .482$

Chrrll ？

griffin［grí＇fin］

 $\tau \alpha \rho เ o u ́, \varphi \tau \in \rho \alpha ́ x \alpha \iota ~ x \in \varphi \alpha \alpha^{\prime} \lambda$

 Aлó $\lambda \lambda \omega \nu \alpha$ ．3．£úpßo入o $\delta \dot{v} v \alpha-$
 vá $\sigma \tau \eta \nu$ Apxaía xal Meo $\alpha t \omega$－ ขเหท่ т́́x

 shop oтที A日ウ̇va．

 NICS отпи Мпотáon 2 ота Eद́́pхвıа．

 ทń computers AMSTRAD пєрıфєрєıкк ω 。 \＆software－тпи
 рвí va ß $\rho \varepsilon \theta \varepsilon i ́ ~ o t \eta v ~ E \lambda \lambda a ́ \delta \alpha . ~$
Еі́цабтє єпíoņ перท́фаvoı үıатí $\mu \pi о \rho о \cup ́ \mu \varepsilon$ va oaç проофє́

 EPSON BROTHER，NEC kaı SEIKOSHA．

 атно́офаıра．
 рย́тทō тทৎ GRIFFIN．
 ті паралávш aпó ह́va aкó $\mu \alpha$ computer shop．

COMPUTERS \＆ELECTRONICS

$\delta \epsilon \delta$ ofévou ótı σ ú $\mu \phi \omega v a \mu \epsilon$ т $\boldsymbol{\eta}$ Gigatronics，то пакєєто

 etalpıüv．H Gigatronics，éx \in
 прош்Өŋणך тои пакє́тои $\mu \dot{\epsilon} \sigma \omega$ єктєта dealers tins A μ єрікخ்s．ミтіs арXés tou єாö $\mu \in \mathrm{VOU}$ X Xóvou；
 паро́цоьо пакє̇то пои $Ө$ а aпєuӨúvetaı otous Xpウ்otes twv IBM PC кaı compatibles．

Пєріббо́тєреs плпрофорієऽ үІа то Foundation，μ порєітє va па́ $\epsilon \in T \in$ aпó $\tau \eta v$ ： GIGATRONICS
\wedge ．Побєıठüvos 18， Tпл． 9429477

SHOOTER

EE／EPROM PROGRAMMER．

H Darlas Electronic Applications，пробфє́ $\rho \in 1$ tüpa èvav vèo EE／EPROM programmer $\mu \in$＇$\uparrow \eta v$ ovo $\mu a \sigma$ oia SHOOTER．O programmer $\mu \pi о \rho \epsilon i$ va $\epsilon \lambda \dot{\epsilon} \gamma X \in \mathrm{I}$ €ảv $\mu \mathrm{i} a$ EE／EPROM tivaı ka入á $\sigma \beta \eta \sigma \mu \in ̇ v \eta$（ERASE TEST）， va avtiypá $\phi \epsilon$ I $x \omega \rho i s ~ \lambda \dot{a} \theta \eta \sigma \epsilon$
$\mu \mathrm{ia}$ кєvỉ EE／EPROM то
 ypriyopa kal xwpis in ßоウ் θ єia тои uпо入оүוбтர் （COPY MODE）kaı té̀os va
 avtiypaфர் aпó тп $\mu \mathrm{i} a$ EPROM $\sigma T \eta v \dot{\alpha} \lambda \lambda \eta$（VERIFY TEST）．

H бưKєuท் $\sigma u v \delta \dot{\epsilon} \in T a ı$ an ${ }^{\top}$ єu θ tias $\mu \epsilon$ тоus：IBM PC， Ảpple II，Commodore 64 Sinclair каı $\mu \epsilon$ опоıобท்потє
 тєриатıко́ хрŋбıиопоєєі interface RS－232 C．H єпıкоıvшvia үivєтaı $\mu \in \rho \cup \theta \mu$ ó 110，300， 1200 ท் 2400 baud．

O EE／EPROM programmer хрпбıлотоוєі Évav RAM buffer twv 32
 128 Kbytes кaı μ пторєi va проурадиатібе тіS EE／EPROMS 27 （C） 16 21516， 27 （C）32，2732A， 2532， 27 （C）64，2764A 27128，27128（A）kaı 27256．H тіцท் тои єivaı 120.000 б ρ x．каı ঠıаті $\theta \in$ тaı aпó тпv：

DARLAS Electronic Applications
Ki $\mu \omega \operatorname{vos} 7$ 7，Aıyà $\lambda \in \omega$ $\mathrm{T} \eta \lambda: 5986179,5986213$

H 工OBAPH EKへOГH

 aүopác．

 ミENO \triangle OXEIA，TA $\triangle I \Omega$ TIKOY $П$ ПPAKTOPE Σ kaı
 TEKTONE \sum кaı MHXANIKOY乏．

IONAN COMPUTERS

TO EEKINHMA TH乏 EHITYXIA乏 $\Sigma A \Sigma$ ．

n TeleVideo Systems，Inc．

ouvర̊દீєા to Mと̇入入ov

$\mu \varepsilon$ tnv avåntu§ñ $\sigma a \varsigma$

 MULTIUSER ón $\omega \mathrm{s}$ to PERSONAL MINI $\mu \varepsilon$ to пропү $\mu \varepsilon ่ v o$

＊INFOSHARE／M عivaı μ ia OEM غ́кठ̄oun tou NOVELL NETWARE
－IBM каı PC－DOS عivaı onjuata katareӨغ́vta
ano i ηv International Business Machines．

Delta Computer Systems

ENA乏 ПРОГЛПІКО ME EIIMOZEİ FORMULAI．

Парако入оиӨஸ́vtas tous aүต்－ ves ms omv T．V．，iows va oké－ $\varphi \tau \varepsilon \sigma \varepsilon$ о́тı η Formula 1 عívaı $\mu i a$
 yıa évav проошпико́ umодоүıтт́． Kaı прáyuatı عíva！！Гıati η Formula 1 zival iows o по aпaımтікós Пعえáms $\mu \mathrm{as}$ каӨん́s пávтa avaそŋтгí
 бuvexஸ́s прокúrtouv．Béßaıa yia $\mu \mathrm{as}$ ，ó入oı

 $\mu \varepsilon т а \mu о р \varphi \omega ́ v \varepsilon т а и ~ о \varepsilon ~ п і т т а ~ a ү \omega ́ v \omega v ~ к а ı ~ к а ́ Ө \varepsilon ~$ ठоидєı́́ апаıтві апо́ тоv прооюпико́ uтоло－

 хеıрі३оvtaı та провлй μ ата́ оац каı аvтапо－

кріvovtaı oııs aпaımíozıs oas $\mu \varepsilon$ тоv íठıо акрıß்̆ тро́по пои хદו－ ріگovtaı ta поли́плока отохгía
 каı проүvшоtıкผ́v ǫ кáӨє Grand Prix．

ОıпробШпикоі ипо入оүıтє́ऽ

 OLIVETTI μ חороúv va ou－
 $\mu о ́ p \varphi \omega о \eta ~ t \omega v$ aпот $\varepsilon \lambda \varepsilon \sigma \mu a ́ t \omega V$ tis Formula 1： Yпо入ovỉovtas taxúmta kaı катáta̧̧n каı $\mu \varepsilon т а \varphi \varepsilon ́ р о v t a \varsigma ~ o ̀ \lambda \varepsilon \varsigma ~ a u t \varepsilon ́ \varsigma ~ \tau і \varsigma ~ п \lambda п р о ч о р і є \varsigma ~$ ота pits，проочц́роuv бє ка́Өє онáס̄a ó入а та отохદía поu autí xpદıáそદтal yıa va ßદ入tiબ́－

 Өаро́тптац，тєХvıкє́s пробıаүрачє́ц пои ıка－

voпoıúv tıৎ ıठ̈aitepȩ anaımioદıs oas kaı
 xáon otm $\sigma u \mu \beta a t o ́ m$ тd́ tou $\mu \varepsilon$ ta industry standards oM 24 ms OLIVETTI عivaı évas
 Formula 1.
 $\mu a t a$. Гıa mv avtıuغtผ́mion tous η OLIVETTI

 aváykes oas kaı Өa Bpoúv via oas tis

 ната, Өa ßопӨ்ŋ்бєı.

 Грачгіо бац̧ ка́Өє $\mu \varepsilon ́ p a!$

 סоu入єıá o avtaүตvıouós vivetaı ó入o kaı пıó

MASSCOMP MC－500：ENA Σ MINI ГIA MEГAへEइ AПAITHइEIइ

O Masscomp MC－500， єivaı évas пропүүย̇vos теXvo久̃оүıка̇ mini ипоגоүıотท்s，пои характппрізєтаı апо் apxІтєктоviкウ் тwv 32 bits каı סuvatótŋта Xeıpıб μ ои̇
 （virtual memory）．$\Sigma \dot{u} \mu \phi \omega v a$ $\mu €$ тоv катабкєиабтท் тои， пробфє́рєтаı үıа єФариоүє́ऽ apıӨرŋтікウ்s avȧ入uōns． $x \in ı \rho ı \mu$ оu̇ $\beta \dot{\sigma} \sigma \epsilon \omega v$ $\delta \in \delta о \mu \dot{\varepsilon} v \omega v$ ，бтатібтікウ்ร， $\delta \eta \mu$ ıoupyias μ оvt $\grave{\lambda} \lambda \omega v$ каı пробоноішопऽ，каӨய̈ऽ каı yıa $\uparrow \eta v$ avántuそŋ software ка்тш апо் то λ єІтоируıко் бüбTnua UNIX．

To бu̇бтп $\mu \mathrm{a} \mu$ поорєі va $\pi \epsilon \rho ı \lambda \dot{a} \beta \in \mathrm{I} \mu \dot{\operatorname{ex}} \mathrm{X} \rho \mathrm{I} 6$ Megabytes
 ठıбкє̇tas twv 5 1／4＂， бклnроüs סiokous
 474 Megabytes кaı μ ováda Taıvias twv $1 / 4^{\prime \prime} \dot{\eta} 1 / 2^{\prime \prime}$ ． Enions，єvowuatüvєı 4K cache memory каı μ порєі va

бuv $\delta \in \Theta \in і$ проаıрєтіка̇ $\mu \in$ тіS
 apı $\theta \mu \dot{\omega}$ V Kıvクтウ்s ипобıабто入ท்s（Floating Point Processor）， $\epsilon \pi \epsilon \xi \in \rho$ рáias mivȧkwv（Array Processor）kaı бu入入oүŋंs $\delta \epsilon \delta o \mu \epsilon ̇ v \omega v$（Data Acquisition and Control Processor）．

хрウ்бтєऽ，поu μ порои̇v va Xрŋбıиопоוойv єітє коוvó тєриатіко் $\mu \in$ RS－232 port， єітє то $\alpha u \xi \eta \mu \epsilon \dot{v} \omega v$ סuvatotウ்тwv Independent Graphics Subsystem．To
入єітоируікó би̇бтпŋиа тои MC－500，eivaı $\mu \mathrm{ia}$ пара入入ауウ் тои UNIX пои єvбшuatüvєı про́б $\theta \in T \in \varsigma$ єuкo入ies $\sigma \in \sigma x \in ̇ \sigma \eta ~ \mu \epsilon T \eta$ standard є̇кठооך каı
 software．

Прıv прохшрท்боuнє $\sigma т \eta v$ пєріурафர் т $\omega v \mu$ оvá $\delta \omega v$ тоu бuбтŋ் $\mu \mathrm{atos}, ~ Ө$ a пре்пєı va ठои̇ $\mu \epsilon$ пшऽ аutés єпıкоıvшvoủv $\mu \in$ таそủ тous． H

Masscomp $\dot{\epsilon} \mathrm{X} \in \mathrm{I} \delta \dot{\omega} \sigma \in \mathrm{I}$
 бхєठiaon Twv кavaגıїv （buses）єाıкoıvwvias，є̇тб। $\dot{\omega} \sigma t \in \operatorname{va} \in \Pi!t u y x a ̉ v \in T a I$ урท̇yop каı aпоботıкท் $\mu \in$ тафорá т ωv п пппрофорıїv． H єпıкоıvшvia $\mu \in T a \xi \dot{\text { ú }}$ TクS CPU kaı tns $\mu v \grave{\mu} \mu \eta$ s，yiv $\mu \in$ то 500 －Series Bus．H $\mu \in$ тафорá тwv $\delta \in \delta о \mu \in ̇ v \omega v$ yivetaı $\mu \epsilon$ тахи̇тпта 8 Mbytes avá $\delta \in u t \in \rho o \dot{\lambda є п т т, ~}$ каı є̇тбו о $\in \pi \epsilon \xi \in$ руaбтท்s 68010 tns CPU λ eitoupyєi $\mu \in$ по $\lambda \dot{u} \mu \in ү \dot{a} \lambda \eta$ тахи̇тŋта Xwpis катабтȧбєıs ava μ ovท̀s． To 500 －Series Bus ипоотпрі弓єı ако̇ца тп $\mu o v a ̇ \delta a \in \pi \in \xi \in$ pyaøias apı $\theta \mu \dot{\omega} \mathrm{v}$ кııクтท்s ипобıабто入n்s каı тп μ оváठa $\epsilon \pi \in \xi \in \rho$ yáaias mıvák ω v． Enions єпוтрєппєı тпv пробӨŋ்кп каı μ ías $\delta \in$ и̇тєрŋऽ CPU．

H єпıкоıvшvia $\mu \in \operatorname{ta\xi ú~тои~}$ бибтท் μ ттоs каı Twv пєрІфєрєІакйv μ оváठ $\delta \mathrm{wv}$ （ $т \in \rho \mu а т і к \dot{\text { á，}}$ ठібкоı к．à．） yivetaı $\mu \in$ то Multibus（IEEE－ 796），$\mu \in$ тахйтทта 4－6 Mbytes to $\delta \in u t \in \rho$ о̇ $\lambda \in \Pi т о$. T́̇̀os，$\mu \epsilon \dot{\epsilon} \mathrm{va}$ тріто каvà λ ı，

то STD＋Bus yivetaı סuvatウ่ η $\sigma u \lambda \lambda o \gamma \eta ं ~ \delta \epsilon \delta о \mu \epsilon \in \omega v$ $\sigma \epsilon$ пєрıßà入入оv прауратікои̇ x ρ óvou $\mu \epsilon \rho u \theta \mu$ ó 2 Mbytes то $\delta \in \cup \tau \in \rho о ் \lambda є ா т о$.

H CPU тои бuбтற்цатоs，
 68000 каı 68010 пои λ eitoupyoùv ata 10 MHz ． CPU Є̇Xєı σ Хєठıaбтєi є̇тбı $\dot{\omega} \sigma t \epsilon$ ó $\lambda \epsilon \varsigma$ oı $\lambda \in$ IToupyi $\epsilon \varsigma$ va єктє入оúvtaı по入ú ypr்yopa． Enions unápxєı μ ia $\mu v \eta \dot{\jmath} \mu \eta$ cache twv 4 Kbytes пои єпוтре்пєı бтоv 68010 va леітоируєі поо апоботіка́： Епıплє́ov，η CPU пєрієххєı ко èvav adaptor пои єпוтре̇пєı in $\mu \in т а ф о \rho \dot{~}$
трıаvтабйa каı ，проऽ то каvá̀ı Multibus

H μ ováda סıaxєipıons tns $\mu v \eta \dot{\mu} \eta \varsigma$ е́x $\in \mathrm{I}$ та апараітпта кик $\lambda \dot{\omega} \mu$ ата үıa tŋv ипобтท்ןıそŋ ипєрßатікウ்ร $\mu v \eta \dot{\mu} \eta \mathrm{~s}$（virtual memory） хшрұтіко́тŋтая 16 Mbytes．
Etaı，єivaı סuvatí η єктє̇̀ $\lambda \epsilon \sigma \eta$ по $\lambda \dot{u} \mu \in \mathrm{y} \dot{\mathrm{a}} \lambda \omega \mathrm{v}$ проүра $\mu \mu$ átwv поu є́xouv үрафтєі үıа mainframes $\sigma \epsilon$ y $\lambda \dot{\omega} \sigma \sigma a$ ANSI－standard FORTRAN 77．H «фибıкウ்»
 архі弓єı aпо то 1 Mbyte каı $\mu \epsilon \tau \eta v$ поооӨŋ்кп картйv $\mu \pi о \rho є i$ va $\phi Ө$ ávєı та 6 Mbytes．Kä $Ө €$ ка́рта є̇Xє। xшрŋтıко́тףта 1 Mbyte，каı пєріє́хєı èvav controller yıa
 twv $\lambda a \theta \dot{\omega} v$（Error Checking and Correcting Controller， ECC）．

H тахи̇тŋта каı η акрі β еı бTIS $\pi \rho \dot{\alpha} \xi \in ı S, ~ a u \xi \dot{a} v o v t a i ı ~ \mu \epsilon$ тпv пробӨウ்кп тŋs μ оváסas $\epsilon \pi \epsilon \xi \in \rho y a \sigma i a s$ apı $\theta \mu \dot{\omega} v$ кıvŋтウ்s uпобıaбто入ท்s，FP－
 апо் то 500 －Series Bus nou $\sigma u v \delta \in ̇ \in I ~ T \eta v ~ C P U ~ \mu \epsilon ~ T \eta ~$ $\mu \mathrm{v}$ ŋ̇ $\mu \eta$ ．Пєріє́хєı 32 катахшрŋте́s пои кратоüv акє́paıous，праүнатıкойऽ $\dot{\eta}$ $\delta ı п \lambda \grave{s}$ акріßєıas арı θ нойs． H μ ováda FP－501， проураинаті弓єє́аı

0L．．．рвүa்

ar＇$\in u \theta \in i a s ~ \sigma \in ~ Y \lambda \dot{\omega} \sigma \sigma a$ assembly．＇Eтбı ка́ $\theta \epsilon$
 kal va $\rho u \theta \mu i \sigma \in I$ ȯ $\lambda \in S$ tis параде்троиऽ тᄁs．Enions，оו
 Fortran kaı C ins Masscomp періє̇хоuv єVto апं єuӨєias про́бßабп бто hardware tns μ ovádas．
 прá $\xi \in ı s$（ $п \rho \dot{\sigma} \sigma \theta \in \sigma \eta$ ， афаірєбп，по $\lambda \lambda$ аплабıаб μ ȯs， біаірєбף，тріушvонєтрікоі kaı ৯оүарı Θ иптікоі
 uпоoттpi弓ovtaı anó то hardware tns μ ovádas．
$\sum x \in \delta$ óv ó $\lambda \in \varsigma$ oा

 ठıavư $\mu a \dot{T} \omega \mathrm{v}$ кaı пıvák $\omega \mathrm{v}$ ．
 autüv TWV uno入оүıб $\mu \dot{\omega}$ eivaı $\eta \mu$ оváda $\epsilon \Pi \dot{\xi} \xi \in \rho$ yacias nivákwv（Array Processor）
 тоv $\epsilon \pi \epsilon \xi \in$ руабтர் 68000，о onoios ouvtovi EI TIS $^{\text {TI }}$ бі́фореऽ $\lambda \in І т о и$ руієऽ каı eivaı unteúӨuvos yıa tףv єाiкoıvшvia $\mu \in \operatorname{T\eta v}$ CPU．Oı
 pováda，eivaı kıvŋтウ்s uпоסıaбто入n்s aп入n்s акріßеıaц．Акӧ $\mu \eta, \pi \in р ı є ́ x \in ı ~$ 16.325 катахшр \dagger тє́s т $\omega v 32$
 $\delta \in \delta о \mu \epsilon ̇ v \omega v$ ．H CPU $\beta \lambda \epsilon \in \pi \in ı$ outoús tous катахшрףtє́S

 tous סıaxeıpıatei $\mu \in$ tıs סıkés tis $\operatorname{\in vTo\lambda és.~}$
Oı хрウ்бтєऽ，μ ппороúv va ехиета $\lambda \lambda \in U$ Oou̇v TIS סuvatȯtŋTeS tou Array Processor，$\mu \in \delta$ ıáфорєऽ unopoutives vpa $\mu \mu \epsilon \in \mathrm{ves}$ бє Fortran 77，C kaı Pascal ths Masscomp．YпápXeI ó $\mu \omega \varsigma$ o пєрıорıбцós，о́тı кá $\theta \in$ фора́ póvo évas xpウ்otns μ торєi va ̇̀xel прóбßaon otn μ ováda．
О МС－500，ипобтпрі३еı
 опоіоі єпıкоıv ω voủv $\mu \mathrm{a}$ і тои

 avantú̧ॄı η Masscomp кaı ovo $\mu \dot{\jmath} \zeta o v t a ı$ Independent Graphics Subsystems．
Káधє éva anó autá ta
 $\epsilon \pi \epsilon \xi \in \rho$ рабтர் 68000 пои тре́Xeı ota 8 ர் та 12 MHz ．H тахи́тпта є ξ арта̇таı апо் то єíסos rou monitor，av $\delta \eta \lambda a \delta \grave{~ \epsilon i v a ı ~ \mu о v o x p \omega \mu a t ı к o ́ ~}$ $\dot{\eta} \dot{\text { È }} \mathrm{X} \boldsymbol{\prime} \rho \omega \mu$ ．Enions，кá $\theta \epsilon$
 Kbytes μ vท̇ μ ns RAM үıa та проүрад μ ата каı 1，2 Mbytes yıa тпv anoӨŋ்кєuon єıкȯvшv．Me Tף xpウ̇on тŋs теXVIкク்ऽ DMA，кá $\theta \epsilon$ unoou̇otnua éxєı an’ єuӨєias
 $\mu v \dot{\jmath} \mu \eta$ тои MC－500．
 тои uпобибтŋ் μ атоऽ，єivaı 1024 X800 pixels yia
 ŋ் 832X600 pixels үıa
 апо́ то плпктро入о́үıо uпобтпрі弓єтаı каı поvтікı．То плпктроло́үıо апотєлєітаı aпó 117 плйктра．ExєI тп סuvatótŋта va парáyєı 256 характท்คєऽ $\mu \in \tau а \xi \dot{u}$ т ωv опоішv пєрı $\lambda a \mu \beta$ ảvovtaı та
 алфаßウ்тои каı μ аӨпиатіка்
 MC－500 μ порєі va
ипобтпрі $\xi_{\epsilon ı}$ бuvo入ıка̇ $\mu \dot{\epsilon е х \rho ı ~}$ 4 Graphics Subsystems．

Kav μ éoa $\mu \mathrm{a}$ گıкn่s aпоӨウ்кєữs о MC－500 μ порєі va xрŋбıцопоıท்бєі Ėva Floppy disk drive $\tau \omega v$ $51 / 4$＂，$\mu \in \chi \omega \rho \eta$ тіко́тпта 1
 ठiok ωv twv 5 1／4＂＂$\mu \epsilon$ Хшрŋтіко́тทта апо் 50μ е́хрı кaı 474 Mbytes кaı т́̇ंоs
 TWv 1／2＂${ }^{\prime \prime} 1 / 4^{\prime \prime} \mu \epsilon$ xшрптіко́тпта 45 Mbytes．

H Masscomp ÉxєI avantú ϵ_{ϵ} モ̇va סıкó tクS λ еітоируіко̇ би̇oт $\eta \mu \mathrm{a}$ ，то RTU（Real Time Unix）to опоіо єivaı μ ia пара入入аүŋ் tou UNIX System III Twv

Bell Laboratories kaı uпобтпрі弓eı то Quick Choice User Interface каı то Ethernet Local Area Network．
To Quick Choice User Interface，праунатопоєєі סu̇o ßađıке̇ऽ лєıтоирүієs．H прйтп єivaı η ठ $\quad \eta \mu ı$ оируіа каı
 кєІцє̇vou пои arteıкоvi弓ovtaı
 モ̇ $\mathrm{Yx} \rho \mathrm{w} \mu \mathrm{a}$ monitors，$\epsilon \mathrm{v} \dot{\mathrm{u}}$ $\mu \pi о р є i$ va uпобтпрі $\xi_{\in ı}$ каı 16 mapáӨupa graphics．Ta парäӨupa autá μ пороu̇v va $\mu \in y \in \Theta u v$ Өoúv，va пєрıotpaфoúv $\dot{\eta}$ va $\mu \in т а к і v \eta Ө$ оúv ката́ μ ŋ́коऽ єvós á ${ }^{\text {gova }}$ ．

H $\delta \in$ u̇tєpף $\lambda \in$ еitoupyia tou User Interface eivaı o é λ еуxos tou ouotnjuatos $\mu \epsilon ̇ \sigma a$ aпó menu．Σ t $\eta v a \rho \times \grave{~}$
 menu каı като́пıv орıбле̇va $\delta \in u t \in \rho \in$ úovta．

О МС－500，паре́хеІ ото xpṙotn éva по入ú ка入ó пєрıßá入入ov үıa тŋv avámтuそŋ software пои β абіґєтаı ото UNIX．Mє Tףv кат $\dot{\alpha} \lambda \lambda \eta \lambda \eta$ єпı入оүท் апо் то menu тоu User Interface，o xpiotins $\mu \pi о р \epsilon i \operatorname{va} \in \lambda \dot{\epsilon} \varphi \xi \in I \quad T \eta$ ठпиıoupyia tou пnүaiou кய்ठıка，тп $\mu \in$ таү入йттıoŋ каı
 проура́ $\mu \mu$ атоऽ

 Fortran 77，C кaı Pascal－2， software yıa $\in \pi \epsilon \xi \in \rho$ yacia

кєıц̇̇vou，utilities yıa tఇv
 Enions otov MC－500 μ нороu̇v va трє́ そouv єФариоүє́s пои є́xouv avartux θ єi yıa то UNIX．
Tєлеıш̈vovtas，Өa пре̇пєı va avaф́́роииє ótו o MC－
 oav ou̇бтпиa бu入入oүñs $\delta \in \delta o \mu \epsilon \dot{v} \omega v$（Data Acquisition System）．Пробфє́рєı $\sigma \epsilon$
 in סuvatótŋta va биүкєVтрйvouv пєı $\rho a \mu a t ı к \dot{~}$ каı єрүаотпроака̉ $\delta \in \delta о \mu є ̇ v a$ ，
 аگıómıота каı va mapouđiá̧ouv ta апотє $\overline{\text { é }} \sigma \mu$ ата тиs $\epsilon \pi \epsilon \xi \in$ руaбias $\mu \in$ үрафıкєє парабтáवєıs．H
 yivetaı $\mu \in \pi \eta$ Xpウ̇бп μ ıas $\mu \mathrm{vȧ} \mathrm{\delta}$ as où入oүท்s kaı $\epsilon \lambda \epsilon \dot{\gamma} \mathrm{Yxou} \delta \epsilon \delta o \mu \epsilon \dot{\mathrm{v}} \omega \mathrm{v}$（Data Acquisition and Control Processor，DA／CP）． H Masscomp，
ठıaӨ்̇тєı па́ра по入入á interfaces（ava入оүıка́， чпфıака́）үıа тп μ оvá δa DA／CP каө їs каı то aпараітпто software． Пєрıббо்тєрєs плпрофорієऽ үıа то би̇бтпиа MC－500 μ порєітє va па́рєтє anó тŋv avtimpoownia Tns Masscomp oтףv Eג入áठa пои Eivaı η ：TECH WARE
$\Theta \in \rho \mu о п u \lambda \dot{\omega} v 6$ 6，Xa入áv $\delta \rho I$ $T \eta \lambda .7240134$

H RAINBOW BPABEYETAI AПO THN APPLE

H Apple Computer Eupürins，arièveııє єıठıкȯ ßpaßєio otn Rainbow Computer Applications A．E．，oav тпv avтıпообштia пои avantúббєı $\mu \in$ tov пוо тахйpu $Ө$ ио каı орӨолоүіотіко் тро்то тіS
 Eupürn kaı in Méon Avato入ウ்．Mє tov тро́то autó，η Apple avaүvüpıaє

 катаßá $\lambda \in ı ~ \eta ~ R a i n b o w ~ ү ı a ~$
 проїӧvTLV Tクs．

INתPIMIA ME THN TCI

H TCI，eivaı $\mu \mathrm{ia}$ єTaıpia пои ѐXєı пробаvato入ıбтєі $\sigma \epsilon$ єфариоүє́s ото $x \dot{\omega} \rho о$ тทs autоиатопоіпопs үрафєiou каı єІठıко̇т $\epsilon \rho a \quad \sigma \in$ єкєive§ пои єпוтре̇поuv in роர் тшv $\epsilon \pi \epsilon \xi \in \rho \gamma a \sigma \mu \dot{\epsilon} v \omega v$ плпрофорıи்v каı пои характпріگоитаı үєvıко̇тєра oav єпıкoıvшvies DATA．

Гıa тпv праүнатопоіпоп autüv twv єфариоүüv，η TCI $\sigma u v \in \rho Y a ́ \zeta \epsilon \in \operatorname{Taı} \mu \in$ тıS єтаıрієऽ MCl кaı Sideral Twv HПA．H MCI，eivaı évas anó tous $\mu \in$ үали̇тєpous opyaviouoús
TПлєпıкoıvшviш்v twv HПA， єvய̈ o oikos Sideral
 ı $\delta \dot{\epsilon} \alpha$ Twv Tєр $\mu a т ı к \dot{\omega} v \mu \epsilon$ по $\lambda \lambda a п \lambda \dot{\epsilon} \varsigma ~ \epsilon І \sigma o ̇ \delta o u s ~-~$

 нıкроӥполоүібтŋ்．
Tautóxpova，та тер μ атıка̇ autá $\delta ı a \Theta \notin t o u v ~ e ̀ v a ~ ı \sigma x u \rho o ́ ~$

поо́үра $\mu \mu$ а $є є є є$ руабіая кєI $\mu \in ̇ v \omega v$ єvய் μ поо xคクбıиопоı $Ө$ oủv $\sigma a v$ Oupides（Mail Box）

H TCI ouvepyá弓єтaı єпions $\mu \in$ тоv оіко DOWTY tins Ayphias，mou катабкє $\dot{\omega} \sigma \tau \epsilon \mathrm{va}$ пробфє́рєı

 ThS．

ミтóxos ths TCl，eivaı va афІєр்бєІ бто ипо்入оıпо autṅs tns $\delta \in$ каєтias $\mu \in ү a \lambda$ üтєрєऽ проопа̇ $\Theta \in I \in \varsigma$ kaı onuavtıkoủs пópous yıa

 texvodoyias otnv E入入áda．

Пєріббо́тєрєऽ плпрофорієऽ：

TCI LTD
Mıхалакопои̇入ou 64 $\mathrm{T} \eta \lambda$ ．7753038－9

NEA EГKATA乏TA乏H TH乏 E＾EA EME ETON HEIPAIA

H E＾EA EПE，

 бта үpaфєia tns Nautıגıaкท்s Etaıpias VRONTADOS SHIPPING atov Пеıраıà．

H $\mu \eta$ xavopyáv ω ơ tou лоуıотпріои，тои типјнатоs

 VRONTADOS，é $ү$ Iv $\mu \epsilon$ ипо入оүібт апотє $є$ єі то $т \in \lambda \in$ utaio
 єтaıpias CONVERGENT каı $\mu \epsilon$ ta єıठıкả vautı入ıaкá пооүра́ $\mu \mu$ ата тпS VESON INC．nou η EAEA єкпробштєi $\sigma т \eta v$ E $\lambda \lambda$ á δa ．

H $\mu \eta x a v o \rho y a ̇ v \omega o n ~ t \eta s ~$ єтаıріая，праүнатопоьŋ்Өпкє xwpis va xpeiaatei
 uпa $\lambda \lambda \dot{\lambda} \lambda \omega v$ ，$\delta \in \delta$ о $\mu \dot{\text { évou ótı }}$ та проүра́ $\mu \mu$ ата тшv E＾EA／ VESON μ поороúv va

 Пєрıббо்тєрєऽ плпрофорієऽ： E＾EA EПE
Валтєтбiou 50－52
Tп入． 3602335

NEE
 ETKATA乏TA乏EI乏 TH Σ M $\Omega P A \cdot I \cdot T H \Sigma$ ＾AइKAPH乏 AE ऽTO $\triangle H M O \Sigma I O$

ОлоклпрїӨпкє про்бфата η єүката́бтабп тшv $\mu \eta x a v \eta \mu$ ȧtwv ALTOS，ota ypaфєia tou Eıठıкои́ Taرєiou Mnxav μ át ωv Мıиеviкш̈v＇Epywv tou Yпоируєiou $\Delta \eta \mu$ обiwv －Eppuv．

To E．T．M．＾．E．， процП $Ө$ єu̇тПкє є̇vav ипо入оүібтท் ALTOS 586－20 $\mu \in т \rho i a \quad \tau \in \rho \mu a т і к \dot{\alpha}$,

 проурациатıбиой， проүра́ $\mu \mu$ ата єфариоүш̈v уıa＾оүıоти்рıо，АпоӨйкп， MıбӨoठooia каӨüs кaı èva єıбıко் про́үрациа үıа тп y $\operatorname{lvikn்~\delta ıaxeipıon~twv~}$

Tous unолоүıбте்ऽ ALTOS
 E入入áठa η єтaıpia：
M $\Omega P A \cdot I \cdot T H \Sigma-\wedge A \Sigma K A P H \Sigma$ $A E$
Kпфıбои் 22 \＆Kaßà入as Tๆл．5134311－15

H ANГOPIOMOE АПОК＾ЕІІТІКОГ ANTIMPOミתПO乏 TH乏 CROMEMCO

Anò tnv etaıpia «ANTOPIOMOE» E．П．E．， $\lambda a ́ ß a \mu \epsilon$ tnv akó入ouөn єпाото入ウ：
AӨịva， 1 Noє μ ßpiou 1985 Kúpiol，

Me autí tnv emiotoגń $\mu a s$ ，emiقupoú $\mu \in$ va пגпрофорп்ооuне тоus avayvய̈́otes tou mepiodikoù oas，órı η eraıpia μ as A＾IOPIOMO乏 computers， eival η amok λ eiotikń avtirpóawros via inv E入入áסa kaı tఇv Kümpo，tou Oikou Cromemco Inc．
Me autí inv iঠiótntá $\mu a s$ ． еіцабтє ol anok λ еıотікоі umeúӨuvoi via Tnv múdnan． єyкatáataon kal umootripl \ddagger n ò $\lambda \omega \mathrm{V}$ t $\omega \mathrm{V}$ п поoiòvt $\omega \mathrm{V}$ tns Cromemco，of HARDWARE kal SOFTWARE kal ws ek toútou éxoupe tnv
 tou Oikou，$\sigma \in$ о́тı афорव́ róoo ro technical support
 véa npoiòvta．
Парака入оü $\mu \in \operatorname{va}$ ठпиобієuӨєi η пароúoa，via in $\sigma \omega \sigma$ Ṫ $\operatorname{ev\eta \mu ต்pwon~tou~}$ avayvwatikoú koivoù．

Me єктiцпỡ «ANTOPIOMOE» E．П．E． H＾EKTPONIKOI YMO＾OTIETE MEAETEL－EФAPMORE АЕ Ω Ф．ГYГГPOY 183 AOHNA TH＾． 9345.858 TELEX： 215984 \triangle ．IANTEMATOE revikós $\triangle /$ vtís

H ETAIPIA $\Sigma \Pi O Y \triangle \Omega N C C S$ EПEKTEINETAI

Mє Tnv єukaıpia Tns avaүү $\in \lambda i a s ~ v \in ̇ \omega v ~ т \mu \eta \mu a ̇ т \omega v, ~$ та Epvaotípıa E $\lambda \in u \theta \dot{\epsilon} \rho \omega v$ ミmouסüv CONSTANTINOU COMPUTER STUDIES（CCS） avaкоivwoav óтı бuv $\delta \dot{\Theta} Ө \eta к а v$ про́бфата $\mu \epsilon$ tous iбXupoús uno入оүıбtés VAX tns Digital
ミкопȯऽ tクs oủv $\delta \in \sigma \eta$ ，єivaı va пробфє́рєı єкпаі $\delta є \cup \sigma \eta$ каı практıки் є $\ddagger \dot{a} \sigma к \eta \sigma \eta ~ \sigma є ~$ ON LINE PROCESSING кaı

 бıаӨ́̇touv 25 ıбıо́ктптоия μ ккроӥполоүıбтє́ऽ $\mu \in T a \xi \dot{~}$ twv опоiшv

IBM，ins Apple кaı тns Digital．

Ta т $\mu \dot{\mu} \mu \mathrm{ata}$ каı $\sigma \in \mu \mathrm{\imath vaj} \rho ı a$ үıа Өє́ната плпрофоріки்ऽ пои éxouv opyavய்oยı ta C．C．S．，ठıаркоủv aпỏ 2 $\epsilon \beta \delta$ о μ á $\delta \in \varsigma ~ \mu \dot{\mu}$ xpı 2 xpȯvıa． Пара́ $\lambda \lambda \eta \lambda a, ~ п \rho о \sigma ф є ́ \rho о u v ~$
 $\sigma \epsilon \sigma \tau \epsilon \lambda \dot{\epsilon} \chi \eta$ €ாIXєıрク் $\sigma \in \omega v$ yıa
 BASIC ர் є $\boldsymbol{\text { п }}$ oav тоMultiplan，то Lotus к．$\dot{\text { á }}$

Tè̀os，ŋ CCS avakoivшoє ótI tous 13 tєлєutaious
 пєрıббо்т $є$ ра апо் 400 а́то $\mu \mathrm{a}, \mu \in \mathrm{Ta}$ द่́ т $\omega \mathrm{v}$ опоі $\omega \mathrm{v}$

 каı uппребієऽ．
Пєрıобо்тєрєऽ плпрофорієऽ： CONSTANTINOU COMPUTER STUDIES
Kn．фı́ias 324，Xa入ávסpı
TП入．6822152， 6841214

R／M COBOL ATO THN CONTROL DATA

H Control Data Greece Inc，avè $\lambda a \beta \in T \eta v$ аvтіпробய்ாєưך σ тпр E入入áda Tns єTaıpias параүшүท்s software Ryan－ McFarland Corporation．

Mєтa乡ú twv ıסıait \in ра
 Ryan－McFarland $\delta ı a \Theta \in ̇$ тєı бтпv паүко́бцıа ауора́， бuүкатале̇уєтаı каı η R／M Cobol пои хрпбıиопоєітаı $\sigma \epsilon \pi \in$ рıббо்т $\epsilon \in \varsigma$ апо் 250.000 єүкатабта̇бєıร． Пєріпои 800 єипорıкєя $\epsilon \varnothing а \rho \mu о ү є \dot{s}$ каı ßоךӨŋтіка̇ проүра́ $\mu \mu а т а$ aváптиそŋラs， є́Xouv үрафтєі $\mu \in \beta$ áaŋ тףv
 пои апотє $є$ і и иопоіпбп тои про்тиாоиANSIX3．2374Cobol．

H R／M Cobol $\lambda \in$ єitoupyєi $\sigma \in \pi \in \rho$ оббо்тєpous anȯ 200
 8， 16 kaı 32 bits． Хрпоıлопоєєітаı үıа avámтиそך єпаүү $\epsilon \lambda \mu a т ı к \dot{\omega} v$ $\epsilon \varnothing а \rho \mu о ү \dot{\omega} v$ ка̇тш aпȯ та λ єітоирүіка̇ бuбт $\dot{\mu} \mu \mathrm{ata}$ PC－ DOS，MS－DOS，CP／M， MP／M，Concurrent DOS， UNIX каı XENIX．
－A入入a проїōvta пои Өa аvтוпןобшாєப்சєı η Control Data，eivaı η R／M Fortran yıa Unix 68000，MX－DOS ض் Unix 8080／88 каı η R／M Basic үıa PC－DOSkaıMS－DOS．

H Control Data，паре̇хєı
 проїòvта тпs，каӨய்ऽ каı єкпаібєєưך бто Eрүабти்рıо
 Пєрıббо்тєрєऽ плпрофорієऽ： Control Data Inc．
＾．इuyypou̇ 194
Tఇ入． 9510811

Av Өと́入єтє va єuxapıotŋӨعítє ouvéாeta kal тахútŋта ع入átє $\sigma \varepsilon \mu a \varsigma$ va па́рєтє ε ќva．．．

 проүра́циата тпS ауорd́я！
 4ns veviás Q－PR04
ПРОГРАММАТА：• АПОӨНКН • ПЕЛАТЕГ • TIMO＾OГHГH

－ГPAMMATIA • $\triangle I E Y O Y N \Sigma I O Г P A Ф O \Sigma ~ \bullet ~ E K \triangle O \Sigma H ~ K O I N O X P H \Sigma T \Omega N ~ \cdot ~ Г P A Ф E I \Omega N ~ T O Y P I \Sigma M O Y ~ \bullet ~ \triangle I K H Г O P \Omega N ~$

\mathcal{C}

 ๔y clos nuer yneei

 ๔y clos nuer yneei

 THESSALONIKI

 THESSALONIKI}

COMPUIER PAGKITE

EEMINAPIA ПАНРОФОРІКНЕ

H CEGOS－ECOSET opyavüvєı $\sigma \in \mu ı$ vápıa үıa Өє́ната Плпрофоріки்я пои areuӨüvovtaı kupiws $\sigma \epsilon$
 opyavı兄üv．Ta $\sigma \in \mu ı$ дápıa autá，μ пороúv va xwpıotoủv

 xш்ро тпs плпрофорıкйs ónws єivaı η Eıбаүшүท் oтп Мікроплпрофоріки்，оו Мıкроӥполоүıбте́s （ $є$ фариоүє̇ऽ－סuvatȯтптєऽ－ крıти்рıа єпı入оүйs），п практікп் єкца்Өŋоп тпs
 II），то λ еітоируıко̇
 лоүıбтıкウ்，η МıбӨобобіа каı оІ Пєла்тєऽ－АпоӨض்кп－
 μ кройполоүıбтїv．

Mia $\delta \in$ u̇t $\epsilon \rho \eta$ о μ ả δa $\sigma \epsilon \mu ı v a \rho i \omega v, ~ а ф о \rho \dot{~} т \eta v$
 т ωv סuvatotítwv kaı ths xpர்ons סıáфор $w v$
 үıa єпіхєІрர்бєıS（Wordstar， Multimate，Oliword， Multiplan，Lotus 1－2－3， D－Base II／III）．

 $\dot{\omega} \rho \in \varsigma$ ．Avá入ova $\mu \in T \eta$ ठıápкєıá тои кобтіґєı aпȯ $13.000 \delta \rho x$ ．$\mu \dot{\text { éxpı }} 21.500$ $\delta \rho x$ ．Ta $\sigma \epsilon \mu$ ıvàpıa θa праунатопоı $Ө$ ойv то $\delta i \mu \eta v o$ No $\epsilon \beta$ рiou－$\Delta \epsilon к \epsilon \mu \beta$ piou， otis aiӨoưes tns CEGOS－

єvסıaф $\epsilon \rho$ ó $\mu \in \mathrm{v} \eta \mathrm{S}$ єтаıріаs．
Гіа $п \in \rho ı \sigma \sigma о ் т є \rho \in ऽ ~$
плпрофорієऽ μ порєітє va $\epsilon ா ו к о ו v \omega v \eta \dot{\sigma} \in \tau \in \mu \in T \eta v$ ：

CEGOS－ECOSET
E入．Bevi่̧̇̇ $K a \lambda \lambda, \theta \dot{\epsilon} a$
Tๆ入．9563050， 9597960

Гia oas поч éxete

To по ழi入ıко́ пакќто
－GEM DESKTOR • GEM PAINT＊•GEM WRITE＊

бє TIMH ЕКПЛНЕН！

Tia oas nou סev éxete
 Kaı $\theta a \operatorname{\theta ć\lambda at\varepsilon ~v’amoktń\sigma et\varepsilon ~}$ rov coroncl pc

$\mu \varepsilon: 512$ к RAM • 2×360 к DRIVES － 12 ＂ORANGE MONITOR
－ЕПЕЕЕРГАГIA KEIMENOY इTA EЛMHNIKA
－$\triangle \Omega$ PEAN ПРОГ＇РАММАТА
－ 100% IBM COMPATIBILITY＊omv пuń t ωv

317．500 $\rho \mathrm{\rho x}$ ．

 ठev трéxeı o七ov CORONA．

Av owatí unxavoypáqnon onyaive：

 пஸ்入non
『 á $\mu \varepsilon \sigma o$ kaı uாعúӨuvo service

то́те butㅁ onuaiveı owotń $\mu n x a v o y p a ́ 甲 n o n ~$

ayopá

H OLIVETTI ETON חEIPAIA

 $\Sigma O \wedge O M \Omega N I \Delta H \Sigma$ п пou

 μ о̇vı $\mu \eta$ е́к $\Theta \in \sigma \eta ~ \mu \epsilon$ проїóvта ths Olivetti．$\Sigma \tau \eta v$ є́x $\theta \in \sigma \eta$ autウ்，μ поорєі каvєis va $\delta \in I$ апо் TIS mо апле̇s үрафо $\mu \eta$ xavés ка।

 ava入்̀бıца．

Tov te入єutaio Xpóvo，to ката̇бтпиа $\delta ı a \Theta \dot{\text { éteı }}$ каı tous пробшாוкойs uпо入оүוбтє́s Olivetti M 20 каı M 24，
 пакє̇та проүра $\mu \boldsymbol{\alpha} \boldsymbol{\tau} \omega \mathrm{v}$ ． Σ व autá пєрı入а $\mu \beta \dot{\text { ávovtaı }}$
 АпоӨŋ்кп，Тıиоло́үıо， ＾оүıбтท்pıo，Mı曰Өобобia）， єФариоүє́s Абфа入ıбтıкク்ऽ каı
 єфариоүє́s yıa Eєvoסoxєіа к．$\dot{\text { a }}$

Ако̇ $\mu \eta$ ，то ката̇ $\sigma т \eta \mu$ а $\delta ı a \Theta \dot{\epsilon} \tau \in I \quad \pi \lambda \grave{j} \eta \eta$ $\sigma \in І \rho a ́$ accessories kaı avta入入актікїv Yıa ò $\lambda \in \varsigma$ tis $\mu \eta x a v \in ̇ s ~ O l i v e t t i ~ m o u ~ e ́ x o u v ~$ поu入nӨєi otnv ayopá та т ϵ € ϵ utaia 30 xpóvıa．

Гıа пєрıббо́тєрєऽ плпрофорієऽ：

XAP．इO＾OM Ω NIAH乏
Гр．Ланпра́кŋ 11，Пєıраıảs $\mathrm{T} \eta \mathrm{\lambda} .4124451$

NEA AПO TH NIXDORF

Ta oưтínata 8870 tns Nixdorf，$\xi \in \Pi \dot{\epsilon}$ pađav Tŋv
 проүрациа்тшv $\epsilon \Pi \epsilon \xi \in \rho$ рабіаs
 tautóxpova $\in \lambda \lambda \eta$ vikoüs kaı入atıvikoús μ וкройs kaı

кєФалаіоиц характท்рєऽ．О। кu̇pıoı Kapàpas кaı

 $\lambda u ̈ \sigma \eta ~ п о и ~ є п ו т \rho є ̇ п ย । ~ т \eta v ~$ праүнатопоіпоп тпS amapaitntпs $\mu \in$ татропйs бто hardware кaı to software
 бuбтt μ átwv，$\mu \dot{\epsilon} \sigma a ~ \sigma \in \lambda i y a$
 hardware，$a \pi \lambda \dot{\omega} \varsigma ~ a u \xi a \dot{v} \in \tau a ı$
 Xарактர் $\rho \omega \mathrm{v}$ үıа та displays kaı tous printers，єv $\dot{\text { б }}$ бто software $\mu \in$ татротє́s yivovtaı μ óvo ota проүра́ $\mu \mu \mathrm{ata}$ word processing．$M \in T \eta$ ouvepyáia єvȯs amioủ проүра́ $\mu \mu$ атоя $\sigma \in$ BASIC，оו
 displays kaı printers μ по $\rho o u ̈ v$ va $є \mu \phi$ avioouv òлo то бüvo八o xapaкти்puv．Mє т η v évap $\mathfrak{\eta} \eta$ tou véou єкпаıбєutıкои̇ є́tous，η Nixdorf opyavய்veı tpia． єпוцорфштіка́ $\sigma \in \mu$ ıvápıa，$\mu \epsilon$ tithous：

－Eıбаүшүท் бто би̇бтпиа
8870 （о்пои ঠıठáбкоvтаı η
 бuбтпuátwv NIROS каı TAMOS，η opyȧv ω ơ apxєiwv，η opyáv $\omega \sigma$ п $\mu a y v \eta$ тікои̇ ठíкou к．à．）．
－TeXvikés mapouđiaans．
Гıа пєрıбоо்т $\epsilon \in \varsigma$ плпрофорієऽ аппєиӨuvӨєitє отпи ка Kópঠа，бтп：

Nixdorf Computer A．E．
＾．इuyppou̇ kaı $\sum k \rho a 1$ ，
$17673, K a \lambda \lambda 1 \theta \dot{\epsilon} a$ ， T η 入．9595112－134－156－190．

> OI IBM PC KAI MACINTOSH IINONTAI
> TEPMATIKA T Ω N CROMEMCO UNIX V

Hetaıpia Cromemco Inc． avakoivшoє ótı ol
uполоүıбтє̇s IBM PC（каı би μ ßатоі）каı Macintosh μ mopoúv va $\sigma u v \delta \epsilon Ө$ oùv $\mu \epsilon$ то би̇бтпиа Cromemco UNIX SYSTEM \vee кaı va
 тєриатікд．

H oúv $\delta \in \sigma \eta$ ，
праүнатопоьєітаı $\mu \in T \eta$ xpウ்oŋ tou vє́ou пакє̇тоu UNIHOST，то опоіо єпІтре்пє। $\sigma \epsilon$ по $\lambda \lambda$ ả PCs va
aпоктŋ்бouv סıкȯ tous xш்po gtov koivó ठíako tou oưtウ்иатоs Cromemco（o
 anȯ $50 \mu \dot{\epsilon}$ хрı 1200 Mbytes）．

Гіа пєрıббо́тєрєऽ
плпрофорієऽ єпикоוvшvєіотє $\mu \in \pi \eta$ ：
A＾ГOPIOMO乏 Computers
＾．Σ uyypoú 183，N．$\Sigma \mu u ́ p v \eta$
Tпл． 9330551,9345858 ，

O OMINOE ABC EE NEE ETKATAETA乏EI乏

O Ouıлos Etaıpıüv Плпрофорікйs ABC，
 tou каı $\mu \in$ таф̣́ $\rho \in$ таı $\sigma \in \mathrm{v} \mathrm{\in ̇a}$ yрафєіа，пои ßрібкоитаı бтп へєшфо́ро ミuүypoú 44，（ $\tau \eta \lambda$ ． 9095645－49）．
 тои Oиілои（ \wedge ．ミuyypoú 137）η иia aпó тіs єтаıрієs TOU，η ABC SYSTEMS \＆ SOFTWARE A．E．，пои aбxолєitaı $\mu \in T \eta v \in \mu \pi о р і а$
 $\mu ı к о о и ̈ п о \lambda о ү ı \sigma т \dot{\omega} v$ каı проүранид்тшv $\delta \eta \mu$ гоируєі éva vèo computer shop，to
 параце்ยєı кaı то $\sigma u v \in \rho ү є i o$
 （9320590，9323715）．
Σ rov ${ }^{\circ}$ O μ іло $A B C$ ， avŋ்кouv aкó $\mu \eta$ оו єтаıрієऽ ABC PROFESSIONAL＊ SERVICES A．E．（параүшүர் проүра $\mu \mu$ àт ωv үıа $\mu \in \sigma a i o u s$

Kaı η ABC INFORMATION TECHNOLOGY A．E． （параүшүท் проүра $\mu \mu \dot{\tau} \tau \omega v$ үıа μ икроӥполоүıбтє́ऽ）

MEISNETAI H TIMH TOY QUAD－SET

H MEMOTEK avakoivwo
 QUAD－SET anó 26.500 ठpx． $\sigma \in 22.000 \delta \rho x$ ．kaı ȯtı

 uпо入оүוбтய̈v Tns IBM， бицтєрıла μ ßаvoнє̇vou каı tou IBM PC／XT

To QUAD－SET，nou סiveı in סuvatótŋta otov PC va

 xарактท̇р \quad vv，киклофорєі т $\dot{\omega} \rho a \sigma \in \delta$ u̇o $\beta \in \lambda T I \omega \mu \epsilon ̇ v \in S$
 2．0А．H є́kסoon 2.0
 $\epsilon \lambda \lambda \eta$ vo λa тıvıкüv xаракти்рыv ómшs єіхє протаӨєі архıка́ апо் тпv IBM，єvய் η Ék $\delta o \sigma \eta$ 2．0A

 урафıкйv характп்ршv пои про́бфата каӨіє́ $\rho \omega \sigma є \eta$ IBM （ $\kappa \omega \delta$ ıкȯs ID 851）．
 סıaӨ̇̇touv túpa Drivers yıa tous vėous єкtumbtés IBM－ Quietwriter kaı Brother HZ－ 35，єvய் бúvtoua θ a uпобтпрі弓оuv каı тоv Proprinter ths IBM．Té ${ }^{\text {I }}$ os， то QUAD－SET $\sigma u v o \delta \in \cup ̇ \in T a । ~$ aпȯ vє̇o ava入utıко́тєро
 ota E入入ŋviká．

Періббо்тєреS плпрофорієऽ：

MEMOTEK

MICROSYSTEMS
Ouñpou 12，А μ фі $\theta \in \dot{\epsilon} a$ 9426763， 9421897.

Еклаıдєvó $\mu \varepsilon v o \imath ~ \sigma \varepsilon$ Computers

$\delta \varepsilon v$ aı $\sigma \theta \dot{a} v \varepsilon \sigma \tau \varepsilon \mu \dot{v} v o ~ \Pi \rho \dot{\omega} \tau o ı ~ a \lambda \lambda \dot{a}$ каı єлаүүєд $\mu a \tau \iota \kappa \alpha \dot{\varepsilon} \xi а \sigma \varphi a \lambda \imath \sigma \mu \varepsilon \dot{v o l}$
 $v \alpha$ yivouv Compatible $\mu \varepsilon \Sigma \alpha \varsigma$

 $\lambda 0 \gamma 1 \sigma \tau \dot{\omega} \nu \kappa \lambda \varepsilon \iota \sigma \mu \varepsilon \dot{\varepsilon} v \eta \mu \varepsilon \dot{\varepsilon} \alpha \alpha$ $\sigma \varepsilon \tau \rho i \alpha$ Main－ Frames（ 360 DOS－370 DOS／VS－ 4300 DOS ／VSE）к $\alpha \iota \pi \lambda \dot{\eta} \theta$ оऽ PC＇s $\alpha \pi о к \lambda \varepsilon \iota \sigma \tau \kappa \alpha \dot{\alpha}$
－Ак $\alpha \delta \eta \mu \alpha і ̈ к о ̇ ~ \pi \rho о ் \gamma \rho \alpha \mu \mu \alpha ~ \Delta ı \varepsilon \theta v \dot{\omega} v$

－$\Sigma v \mu \mu \varepsilon \tau \varepsilon \dot{\varepsilon} \chi о v \tau \alpha \varsigma ~ \sigma \tau \alpha, M o v \alpha \delta ı \kappa \alpha \dot{\alpha} \sigma \tau \eta \nu$ E $\lambda \lambda \dot{\alpha} \delta \alpha$ ，
 $\tau \eta \varsigma$ Eтаıріаऽ $\sigma \eta \mu \varepsilon \rho \alpha, \varepsilon \xi \alpha \sigma \varphi \alpha \lambda i \zeta \varepsilon \tau \varepsilon \tau \eta \nu$

－$\Delta \eta \lambda \omega \dot{\sigma} \sigma \varepsilon \dot{\varepsilon} \gamma \kappa \alpha \iota \rho \alpha \sigma \cup \mu \mu \varepsilon \tau \sigma \chi \eta ๋ \quad \sigma \tau \alpha \varepsilon \iota \delta ı \kappa \dot{\alpha}$ Aptidute Test $\varepsilon \pi \imath \lambda \circ \gamma \eta \varsigma^{\circ} \sigma \pi \circ \cup \delta \alpha \sigma \tau \omega ் \nu$ $\kappa \alpha \iota \alpha \varphi \eta ं \sigma \tau \varepsilon$ тоטऽ $\dot{\alpha} \lambda \lambda 0 \cup \varsigma ~ \sigma \tau о 20 \% ~ \tau \eta \varsigma ~ \alpha \gamma о \rho \alpha \dot{\varsigma}$

DATA RANK

＊$\triangle I E Y O Y N \Sigma H ~ E K П A I \triangle E Y \Sigma E \Omega \Sigma ~ K A I ~ E N E P T H ~ \Sigma Y M M E T O X H ~ N I K O N A O Y ~ Г \wedge Y K O Y * ~$ EPГA乏THPIA ПヘHPOФOPIKH乏
DATA RANK CDRPDRATIDN

APRICOT F1，PC каı Xi IBM PC，XT каı AT EPSON OX－16（IBM compatible） ЕКТҮП』TE

APRICOT PC

IBM PC

ПРОГРАММАТА ГIA O＾OY乏 TOY YПOへOГIธTE

ЕПІГTHMONIKE乏 ЕФАРМОГЕ乏
－latpıкó Apxєio AбӨєvüv，Ефариоүர்，Oסovtıатрєiou
 ME TO NEO ANTI乏EIミMIKO KANONI乏MO，TO ПPOГPAMMA AUTOCAD KAI PLOTTER
EIDIKE E EФAPMOГE
VIDEO CLUB KAI TO MONA \triangle KKO ПРОГРАММА ПOY EKTYП Ω NEI $\Sigma Y \Sigma T H M A T A ~$ ПРОПО ГЕ $\triangle E \wedge T I A$

$\eta \dot{\alpha} \lambda \lambda \eta$ 『 $\boldsymbol{\lambda} \lambda \dot{\alpha} \dot{\sigma} a$

H CYCLOS MICROSYSTEMS MITAINEI ETHN ATOPA T Ω N HOME MICROS

H CYCLOS MICROSYSTEMS， authorized dealer $T \omega v$ проїövTwv tns TANDY каı twv calculators，TnS TEXAS INSTRUMENTS，aпȯ TOV
 ипŋ்кє $\delta u v a \mu ı к \dot{~ к а ı ~ б т о ~}$ xш̈рo twv home computers． H CYCLOS סivel Iঠıaiтєpn द́ $\mu ф a \sigma \eta$ otnv прош̈Өnon twv $\mu o v T \dot{\epsilon} \lambda \omega v$ tns Amstrad，
 kal ta μ оит $\grave{\text { é }}$ a tns COMMODORE，TIS SINCLAIR kaӨüs kaı tov ATARI 520ST．
－Oגol ol пapanáve micros，
 пєріфєрєІакд்（printers， olotters，digitizers， monitors，disk－drives， modems，voice synthesizers，joysticks $k \lambda \pi$ ）

 kaӨapıбтіка́，єіठıка̉ ßüб μ ата－ка $\lambda \dot{\omega} \delta ı a$, uпатарієऽ єוठוкш்v xpウ̇бєшv ＜$\lambda \pi$ ）．
H CYCLOS，סıaӨ̇̇тєı ако́ $\mu \mathrm{\eta}$ ठıáфора троүра́циата，пєрıобıка́，
 каӫ்s каı цıкроє̇пıпла үıа теріфєрєіака́ каı נполоүітт̇́s． Пєрıббо்тєрєऽ тлпрофорієऽ：

CYCLOS MICROSYSTEMS Аүүє 1 ákп 39，тп入． 279574 $\Theta \in \sigma /$ viкп

MIKPO－X $\Omega P A:$ NEO SHOP $\Sigma T H$ OEミ£AへONIKH

H MIKPO－X Ω PA
（Evwтiküv 9 тП入．525092，
534460）eivaı ėva
computer shop nou ápXıбє va $\lambda \in І т о и \rho ү \epsilon i ~ \sigma т а ~ т є ं \lambda \eta ~$
 aпȯ avӨрӥпоus $\mu \epsilon \pi є і р а$ бтоus uпо入оүוбте̇ऽ，пои

HONEYWELL BULL oTn $\Theta \in \sigma \sigma a \lambda$ ovikn．

To vє̇o shop，סıaӨ்̇тєı $\mu ı a$ $\mu \in ү \dot{\lambda} \lambda \eta$ үкд́ $\mu \mathrm{a}$ uпо入оүıбтய்v каı пєрıфєрєıакш̈v （Amstrad，Commodore， Sinclair，T．I，Epson，Sanyo， IBM，Tulip，Apricot，клп）каı
 катабкєии் ठıaфо̇pwv $\mu ı к \rho о є \xi а \rho т \eta \mu \alpha \dot{\tau} \omega v$ үıа ипо入оүıбтє́s．

NEEE

\triangle PATHPIOTHTE TH乏 ETAIPIA乏

 H．X．EYAГГEへI $\Delta H \Sigma$H H．X．Euayy $\in \lambda i \delta \eta$ ，ta т $\in \lambda \in u$ таia тріа Xpóvıa прошӨои̇бє tov Newbrain， бтך B．E入入áठa，̇́Xovtas пара́ $\lambda \lambda \eta \lambda \alpha$ т ηv апоклєІбтікท́ аитіпробшाia тои uпо入оүıoтர் autoú yıa in Bȯpєıo E入入áda．Eठ்̀ kaı סủo $\mu \eta ் v \in \varsigma, ~ п \rho о \omega Ө \in i ~ к а ı ~$
 AMSTRAD kaı tns COMMODORE，θ ewpüvtas о்т ßрібкоvtaı autñ in бтіүцй бто ке̇Vтро тои єvסıaф́́роvтоs tou ayopaátikoú koivoủ．

ミтоv тоде̇а тшv $\epsilon \pi a ү \gamma \epsilon \lambda \mu a т ı \kappa \dot{\omega} v$
 Euayp \in 入idns umootnpi $\boldsymbol{\epsilon}_{\epsilon 1}$ tous IBM compatible
uпо入оүıбте̇ऽ tクs G．I．S．，пои єivaı μ ıa $\in \lambda \lambda \eta$ vıкர்
катабкєиа̇бтрıа єтаıріа $\mu \epsilon$乇́ $\delta \rho a$ in＾ápıóa．To
 G．I．S．ovo $\mu \dot{a} \zeta \in T a ı$ PYTHIA II kaı $\mu \in 256$ K RAM， 2 disk drives twv 360 K ， μ оvȯx $\rho \omega \mu \eta$ oӨóvŋ каı
 otis $250.000 \delta \rho x$.
Пєрıббо்тєрєऽ $п \lambda \eta \rho о ф о р і є \varsigma:$

H．X．Euayy \quad ii ${ }^{\prime} \eta$ ，
Eyvatia 65，тп入． 270054 $\Theta \in \sigma /$ viкп

H DELTA COMPUTER SYSTEMS ANTIПPOミЛПOE TH乏 DATASOUTH

H єтaıpia tns
Өєбoa入ovikns Delta Computer Systems，

 Televideo，avé $\lambda a \beta \in$ кaı т ηv
 єктuпштய̈v Datasouth．

Oı єкtunlwtés ths Datasouth eivaı twv 180 ウ் 220 Cps каı μ пороúv va ouv $\delta \in Ө$ oủv $\mu \in$ ò̀ μ ıкроӥполоүıбтє̇ऽ каӨய̈ऽ каı $\mu \in$ та бuбті் $\mu a r a$ IBM 34／36／38 ка। IBM 3270.

Гıa пєрıббо்тєрєऽ плпрофорієऽ μ порєітє va т $\eta \lambda \epsilon \varnothing \omega v \dot{\eta} \sigma \epsilon \tau \epsilon \sigma T \eta v$ аvтіпро́бшто єтаıріа бтп Өєб／viкп（031－538803）каı oтףv AӨŋ்va（5621960）．

TO MICRO ПРО Ω EI THN PYTHIA

To MICRO ins Өєбба入оviкпs，anò тоv
 плє̇ov каı ото хய̈ро тшv $\epsilon \pi a ү \gamma \in \lambda \mu a т ı \kappa \dot{\omega} v \in \phi a \rho \mu о \gamma \dot{\omega} v$,
 PYTHIA tns Greek
Integrated Systems．
Σ Tov то $\mu \dot{\epsilon}$ а тоu software， то Micro $\delta ı a \Theta \dot{\epsilon}$ тєI то єцпорıко́ пакє̇то，поо́үра $\mu \mu$ а yıa VIDEO CLUB каı паке̇то yıa По入ıtıкоús Mnxavikoús．

Kaı yıa va $\mu \eta v$ $\xi \in x v a \dot{\mu} \mu \epsilon T \eta$
 ото $x \dot{\omega} \rho о$ twv home computers，oas avaфє́роuиє ótı סıopyavüveı $\sigma € \mu$ ıvápıa yıа арха́pıous каı прохшрпиє̇vous．

Пєрıббо்тєрєऽ
плпрофорієऽ：

Micro

Epuoú 2，тп入． 534258 Өєб／vікп

NEA MONTEへA TH乏 ALPHA MICRO АПО THN INFOTEC N．G．

H үvшбтர் a \quad єрıкáviкn ϵ taıpia Alpha Micro， $\epsilon \mu ф a ́ v ı \sigma є$ про̇бфата $\sigma т \eta v$ ayopá סúo véa проiỏvтa tףs． Про́кеıтаı үıа тŋ̄ ка̇рта AM－616 VIDEO TAPE CONTROLLER каı үıа тоv uпо入оүוбтウ் AM－1000

H AM－6்16，ouvo $\delta \in \dot{\in} \in T a ı$ aпȯ єıסıкȯ software kaı סivєı in סuvatótŋта $\sigma \in$ IBM PC， XT，AT $\mathfrak{\eta}$ PC compatibles va kảvouv backup $\mu \epsilon T \eta$ ßoṅӨєıa μ ıas koıvウ̇s бuбкєuท்s Video．O xpウ்бтŋs $\mu \pi о р є і$ va avtıүрá $\psi \in ı$ ò入о то
 apxєia ท̇ μ óvo та архєia пои éxouv $\mu \in$ татропе்ऽ $\sigma \epsilon$

MCrOpous

TO ПIOMETAMO ONOMA ETOYE MIKPOYE COMPUTERE

backup．Oı iסıєऽ
סuvatótŋтє̧ uпảpxouv kaı yıa тףv єYүрафர் aпó то back up бто бклпро் סібко．H ка̇рта aпaıтєi тоu入áxıбтоv
 $\pi \in \rho ı ß \dot{\lambda} \lambda \lambda$ ov MS－DOS 2.11 каı 3．0．H тахи̇тпta єyppaфท்s，єivaı $1 \mathrm{MB} / 1,3$ $\lambda \in ா т \dot{a}$ ．Мпороǔv va xpクбıиопоı $Ө$ oúv video $\mu \epsilon$ format NTSC，PAL $\dot{\eta}$ SECAM．

To $\delta \in U ̇ T \epsilon \rho o$ vèo проḯv ins Alpha Micro eivaı o uполоүıбтท่s AM－100 пои ßабі弓етаı бтоv MC 68000.
 512 K standard $\mu v \eta \dot{\eta} \mu$ ，пои μ порєі va єпєктаӨєi бта 3，5 Mbytes． $\mathrm{H}_{\pi \in \rho і ф \in \rho є і а к ท ் ~}^{\text {п }}$ $\mu v \eta \dot{\mu} \mu, \pi \in \rho ı \lambda a \mu ß a ̉ v \in ı$ бк $\lambda \eta \rho o ́$ ठібко twv 20Mbytes kaı $\mu \pi о р є і ~ v a ~ є п є к т а Ө є і ~ \sigma т а ~$
 тпऽ ка́ртаऽ AM－616， uпápxєı ठuvatóтŋта үıа bacKup μ е́x 100 Mbytes．

О AM－1000，סıaӨ̇̇тєı то multi user，multi tasking time sharing λ єitoupyiкó бüбтпиа AMOS／L каı μ порєі va uпобтпр 3 xpウ்otes．H тıиท் tou єivaı 8．200\＄．

Пєрıббо்тєрєऽ

 п $\lambda \eta \rho о ф о р і є \varsigma$ yıa ò λa та μ ovté̀ λ a ths Alpha Micro $\mu п о р є і т є ~ v a ~ п а \dot{\rho} \epsilon т \in а п о ் ~ т \eta v$ INFOTEC N．G． इa入apivos 5 Tn入． 513050 Өєбба入ovikn
ПРОГРАММАТА ГІА ПОАІТІКОY乏 MHXANIKOY乏TON EITMA XT

Киклофорєі $̄ \delta \eta$ апо் та $\mu \dot{\epsilon} \sigma а$ Октшßріои пакє̇то
 £IГMA XT．То паке̇то пєріє̇Xєı モ̇va oúvo入o проүра $\mu \mu$ áтшv пои е̇хоuv бuvtax θ єi $\sigma u ̈ \mu \phi \omega v a \mu \in$ tov

kaı єivaı ypa $\mu \mu \dot{\operatorname{civa}} \sigma \epsilon$ FORTRAN－77．

Ta киріо்тєра проура́ $\mu \mu а т а$ тои пакє́тои autoú єivaı ta $\in \xi \eta$ ทंऽ：
－PLAK：Eni入uoŋ плакїv $\mu \epsilon$ $\epsilon ா a \lambda \lambda \eta \lambda i a \delta u \sigma \mu \in v \in ̇ \sigma t \in \rho \omega v$ ， бıабтабıо入óyпбף каı катаvo䒑ท் фортішv otıs
 DIN．
－ANTIS：Eпiגuon xwpıкои̇ плаıঞ̈ou таuтóx $\rho o v a$ үıa opıそ̇̀тtıa каı катако́рифа фортіа бú $\mu \phi \mathrm{wva} \mu \in$ то vє̇о

Tuxoúба ка̇точף，$\mu \in$ ঠuvatótทта， 62 бтu̇ $\lambda \omega v$ avá о́рофо каı 15 оро́фwv．
－DIAS： 土ıaßá̧eı ta $^{\text {ta }}$ aпотє $\lambda \dot{\epsilon} \sigma \mu$ ата тои ANTIS，
 фортіа бıатоиท்s （ λ а $\mu \beta$ ảvovtas uпо̇чך каı то $\epsilon / 2$ үıа пєр．ठока́рıа каı otú入ous）kaı ठıaбтабıо入оүєі та סокápıa $\mu \in \kappa$ кд́ $\mu \psi \eta$－
 ठıаگоvıкท் ка́ $\mu \psi \eta$－бıáт $\mu \eta \neq \eta$ каı та тоıхіа би̇ $\mu \phi \omega v a \mu \epsilon$ то vє̇o avtıбєıбノıко́ kavoviouó．
$\Omega \varsigma$ yvwotó，o इITMA XT
 compatible uாo入оүібтn்s， пои катабкєиа́ $\zeta є$ таı отп Өєбба入оviкп апȯ тŋv SandH（ \wedge ．इoфou̇ 2，$\tau \eta \lambda$ ． 545158）．

То паке்то yıa По入ıтıкойs Mnxavıкoús ঠıati $\theta \in$ taı aпȯ то үрафєіо «Zшүрáфоs Π－ ミтаирака́кпс М．»． $\Delta \omega \delta \in k a v \eta \dot{\sigma} \circ u 7$, Tп λ ． 525162，Өєбба入оvikп．

H BCC DEALER THE WANG $\Sigma T H$ OEIEANONIKH

H BCC（Business

Computer Centre）

ঠпиıоирүウ்Өпкє бтıऽ архе̇ऽ tou 1985，пооwӨüvtas in бєıрá Personal ths Wang кaı סivovtas ıסıaitєpク ßapu̇тпta бто μ оvтє่̇入о Professional．
Σ tov тоне̇а тои software，
η В пакє̇та WORD
PROCESSING，MULTIPLAN， BATABASE，NOTEBOOK， BUSINESS GRAPHICS каӪ்ц каı $\mu ı \alpha$ $\sigma \in \rho \dot{\rho}$ $\epsilon \lambda \lambda \eta v i \kappa \dot{\omega} v ~ п \rho о ү \rho a \mu \mu a \dot{\tau} \omega v$. Апо் autá，$\xi \in \chi \omega \rho i \zeta \in І$ то єцторіко் пакє̇то пои
 Геvikṅs＾oyiotikñs
 Моүıбтіко́ \sum Хе́̇̇ı， MıбӨoठобias，АпоӨп்кпs， Tıголо்yпons，Пєлатய்v， Коото入ӧүпопs， Xрєய்үрафшv каı

Н ВСС，прошӨєі акӧ $\mu \eta$ software yıa סıáфорєऽ
 Evঠєıктіка́ avaфє́ $\rho о u \mu \in T a$ проура́ $\mu \mu а т а ~ ү і а ~$
BOUTIQUE，SUPER
MARKET，VIDEO CLUB，三ENO \triangle OXEIO， ФАРМАКАПОӨНКН каı yıa Гıatpoús，Дıкпүópous， इuノßо入аıоүрáфous，
По入ıтікойs Mnxavikoùs кaı Epyo入йптєऽ $\Delta \eta \mu$ обiwv －Eppuv．

Пєрıббо்тєрєS плпрофорієऽ： BCC．
Тбıиıбкท் 44，тп入． 282503 Өєб／viкп

NEO KATAETHMA THE «TEXNOAIAETAEHE，

Eпєıסウ் то μ ıкоо́ shop тпs Ka μ ßouviwv $\delta \in v \mu$ ппорои̇бє п入є̇ov va ıкаvoпоוท்бєı ó $\lambda \in \varsigma$ tףS tis סpaotnpiótntes，η
 бто 135 тクs oठоú Tбıиıбкท்
 єпаүуч $\in \lambda \mu a т ı к \dot{\omega} v$

M \in ta μ оvté λa tns APRICOT，yvwpi弓єı І ठıait $\in \eta$
 $\mu \eta \chi a v ı к \dot{\omega} v$ каı т ωv орӨобоvтікய̈v．Гıa tous

 пои трє́хєı бтоv F2 каı $\sigma u \mu \phi \omega v \epsilon i \mu \epsilon$ то vє̇o
 （апаıтеітаı $512 \mathrm{~K} \mu v \dot{\mu} \mu \eta$ ）．Гıа tous oठovtiatpous，éxeı ঠŋцıоирүท்бєı є̇va пакє̇то，бє GSX $\mu \in$ үрафікд́，пои крата́єє єІбкó архєіо апок入ібєшv каı бuүк入iбє ठоvтıш்v каӪ்ऽ каı ódєऽ тіS єпице́pous єpyađies tou iatpeiou．

Пєрıббо்тєрєऽ $\pi \lambda \eta \rho о ф о р і є \varsigma:$

Texvodiáataōn
Тбıиıбкท் 135，тпл． 223966 Өєб／vікп

COMPUTER CLUB

 इTH \wedge AMIA Computer Club $\mu \in$ бто́хо т $\eta \vee$ uாє каı тŋv avta入入aүท் aпȯ $\psi \epsilon \omega v$ каı бкє̇ $\Psi \epsilon \omega v$ бто $\chi \dot{\omega} \rho o ~ T \omega v$ uпо入оүıбтய̈v．

To Club，пробфє́ $\rho \in I$ бта
 каı $\xi \in \operatorname{vj\eta } \beta ı \beta \lambda_{ı} о$ ррафіа үıа бuvexŋ் кaı по入üплєupク
 ayopá aछıȯлoywv проүра $\mu \mu \dot{т} т \mathrm{v}$ ，ठuvaто́тпта єvoıкіäns umo＾оүıбтய்v，
 ayopá kaı opyávwon бєцıvapiwv yıa apxápıous $\dot{\eta}$ каı vıa прохшрпиє̇vous．

To Club，סıaӨ́̇tel иподоүıбте́s каı пєрІфєрєıака̇ Commodore， Amstrad，kaı Sinclair yıa практікท் є $\xi \dot{a} \sigma к \eta \sigma \eta$ тшv $\mu \in \lambda \dot{\omega} v$ тои．YпápxєI aкȯ $\mu \eta$ $\mu \in ү \dot{a} \lambda \eta$ поıкı入ia єкпаıठєuтıкய̈v каı єпаүү $\in \lambda \mu a т і к \dot{\omega} v$ проүра $\mu \mu \dot{т} \omega v$, каӨய̈s каı по入入á пaıxviठıa．

Гıа пєрıббо்тєрєऽ плпрофорієऽ：
COMPUTER CLUB＾AMIA乏
＾є \quad viठou 21 （1os óp．）
$T \eta \lambda .32927$

AUTOCAD

NUMBER ONE

$\varepsilon \pi i \pi \varepsilon \delta 0$ үI α т α COMPUTER-AIDED DRAWING

To AUTOCAD sivaı ह̇va поо́үрациа охвठiou каı
 BUSINESS COMPUTER $\mu \varepsilon$ PC.DOS $\dot{\eta}$ MS.DOS.

 катаүрачй.

Roland

PLOTTERS

DIGITIZERS

apricot

ๆ $\dot{\alpha} \lambda \lambda \eta$ F $\lambda \lambda \dot{\alpha} \delta a$

H SINGULAR Σ TH OEइミANONIKH

H Singular，ouvexi弓ovtas тпV avoठıкウ் тŋs порєia वто X $\dot{\rho} \rho$ о тоu software，ávoı $\xi \in$ про́бфата éva véo uпоката́бтпй бтп Өєбба入оviкп．Eтоı η єтаıріа $\mu \pi о \rho \epsilon і$ т $\dot{\rho} \rho a \mathrm{va}$
 п $\in \lambda$ àtєऽ тŋS anó in Bȯpєıa E入入áठa．
¿то vє́o uпоката́бтпйа
 паке̇та тпऽ Singular，та опоіа aп€uもu̇vovtaı $\sigma \epsilon$ micros kaı super－micros каı ка入и̇птоиv то є $ө$ порıко́ кu̇к $\lambda \omega \mu \mathrm{a}, \mu, \sigma Ө$ oठoøia，
 пІбтопоוท்бєıร－
 $\dot{\epsilon} p \gamma \omega v$, кuк $\lambda \dot{\omega} \mu$ ата Xovסрікท்s 入ıaviкís к．ȧ．

Пєрıббо்тєреS

плпрофорієऽ： Singular
Фра́үкшv 6 Өєбба入оviкп Tп入． 520776

MHXANOPTAN $\Omega \Sigma H$ ミTO KTEA KOPINOOY

H \triangle ıоікпоп тои KTE＾ KopıvӨias，$\theta \dot{\text { é }}$ ovtas va $\beta \in \lambda$ тіш்бє о́бо то סuvatóv пєрıббо்тєро тŋv парохウ் uпทрєб兀їv проऽ то коіvó， aпoфáбıбє va єıбáyєı in $\mu \eta x a v o p y a ̉ v \omega o n \sigma^{\prime}$ autỏv то форє́a．
Tп $\mu \in \lambda \dot{\epsilon} \tau \eta$ каı єүкатд̇бта⿱㇒木， $a v \in \dot{\wedge} \lambda \beta \in \eta$
MHXANOPГAN $\Omega \Sigma H$
ПЕ＾OПONNH乏OY ЕПЕ，η опоіа єıठıкєบ̇єтаı отпV єпілưך проßлпна்тшv CPM （Critical Path Method），
PERTH（Program Evaluation and Review Technique），

Linear Programming к．$\dot{\text { a } . ~ T a ~}$ проүра́ $\mu \mu$ ата тпs МП ЕПЕ， Eivaı $\delta ı \in \theta v \omega \dot{s}$ yvwotá kaı avtımpoowneúovtaı otnv Eupüாn каı oтıs Apaßıке̇s x $\dot{\text { ẅpes aпó tov оіко }}$ JEORGA A μ ßoúpyou．

Н МП ЕПЕ，єүкатє́бтпбє бта үрафєіа тои KTE＾ KopivӨои то би்бтпиа Apricot Point $32 \mu \in \delta$ u̇o
 териатікойs otaӨ μ ойs（F1 E）．Oı парапáv $\omega \mu$ оvá $\delta \in \varsigma$ ， єivaı $\sigma u v \delta \in \delta \in \mu \dot{\operatorname{v}} \mathrm{v} \in \varsigma \quad \mu \in T a \xi \dot{u}$ tous $\sigma \in$ ठiktuo LAN（Local Area Network）．

Та проүра́ $\mu \mu а т а$ аvєпттиदє то т $\mu \eta \dot{\mu} \boldsymbol{\alpha}$ software tns MП ЕПЕ．ІठıаітєрП β ари́тŋта бо́Өпкє ото про́үра $\mu \boldsymbol{\alpha}$ тои Графєiou Kivnons，то опоіо пре்ாєı va $\lambda a \mu \beta a ̇ v \in!~ u ா ’ ~ o ́ \psi \eta ~$ tou пápa по入入е̇s пара́ $\mu \in т \rho о u s ~(\delta ı a \delta \rho о \mu є ́ s ~$ twv $\lambda \in \omega \varnothing$ орєi ωv ，ω рápıo

Twv oठnyẅv，$\beta \lambda \dot{\beta} \beta \in s$ ，tn
 к．a．）．

 парá入入n入а $\delta \eta \mu ı$ ируєі каı апоӨŋкє乇்єı бтоıхєіа та опоіа хрпбıиопоьойvтаı апо் àへ入а，＾оүıбтіка́ проүра́ μ ата．

Апотє $\lambda \dot{\epsilon} \sigma \mu a t a$ tns
ϵ фар μ оүท்s тои
проүра́ $\mu \mu$ атоऽ，ŋ̇таv η єvturmoraкท் $\mu \in i \omega \sigma \eta$ twv 120 xрŋбıнопоьои́ $\mu \in v \omega v$
 400 ठıaбронӹv $\sigma \in 85$.

Пєрıббо்тєрєऽ плпрофорієऽ：

MHXANOPTAN $\Omega \Sigma H$ ПE＾OПONNH乏OY EПE
Ап．Пaú入ou 28 KópivӨos Tク入． 21020
μ ккроӥпо入оүเбтغ่ৎ

ZX SPECTRUM Sinclair
Conmodore
AMSTRAD
SRIC Atmos 48 K
－PRINTERS－INTERFACES－MONITORS－SOFTWARE

KENTPIKA ГРАФЕIA
इANAMINOE 2 －THA．031／ 545967 54622 OEEEAMONIKH

－Проүрддциата үIa VIDEO－CLUB
 tov umoגоүıбтض் tns emiӨupiac oac．
－Проүра́ μ ата MHXANIK $2 N$

 ра ठок \dot{v} к．á．

Enions．．．

COMMODORE 64
AMSTRAD CPC－464
AMSTRAD CPC－6128
AMSTRAD 8256
Printers：STAR
EPSON

HOME COMPUTERS

disk drives
ava入ஸ்бı $\mu \mathrm{a}, \beta ı \beta \lambda i a$

$\eta \dot{\alpha} \lambda \lambda \eta$ ■ $\lambda \lambda \dot{\alpha} \dot{\sigma} a$

H ГENIKH MHXANOГРАФIКH BO＾OY EПEKTEINETAI

H ГENIKH
MHXANOГРАФІКН，пои $\xi \in k i v \eta \sigma €$ бav software house kaı service bureau， єпектєivel tis
 i $\delta \rho$ uơn єvós Computer Shop бтף סוєúӨuvan $\triangle \eta \mu \eta$ трıádos 249 －Гацßе்та бто Bòло．
Σ то ката̇бтт μ а，uпа̇рхєі

 Twv єTaıpıüv Apple， Sinclair，Amstrad kaı Commodore．Ekєі，o $\epsilon v \delta ı a \emptyset \in \rho o ́ \mu \in v o \varsigma \mu \pi о \rho \in i v a$
 $\epsilon \mu$ порıка́ каı теXvıка́ пакє̇та ท் ठıáфора паıхviઠıa．

Пảva aпó то computer shop，$\sigma \epsilon \dot{\text { à } \lambda \lambda о \text { о́рофо，}}$
$\mu \in т а ф є ́ \rho Ө \eta к а v$ та кєутрікд ypaфєia tns ГENIKH Σ
MHXANOГРАФІКН乏 каı то Service Bureau．
 dealer tns Rainbow
Computer Applications SA
（Apple）үıа тпV пєрıохウ் тоu
Bö入ou．
Пєрıббо்тєрєऽ
плпрофорієऽ：
「ENIKH
MHXANOГРAФIKH－
E．इEФEPEIA $\triangle O Y$ \＆इIA OE

Tף入．32556，25068， 38221
Bó̀os

H

MHXANOГРAФHEH BEPOIA乏
ПAPOYEIAZEI ENA NEO ПAKETO
H MHXANOTРAФHइH
BEPOIA乏 OE，aбхо入єіта।
 $\mu \eta x a v o \gamma \rho a ф ı к \grave{~ o \rho y a ́ v} \omega \sigma \neq$ tuv 「єшрүıкüv
$\Sigma u v \in т a ı \rho ı \sigma \mu \dot{u v}$ ．Про́бфата， $\sigma \epsilon$ бuvєpyađia $\mu \in$ tov
 плйрєऽ ауротоßıоипха⿱וко́ пакє̇то єфариоүш̈v пои тре́хєє $\sigma \in \mu$ лкроӥпо入оүıбте́s．

Hסף，то пакє́то аuто́，пои ка入и்птєı єфариоүє́s yıa ठıaxeipıoŋ vwnüv робакіvшv，бпиптрıакш̈v каı ßацßакıой，то хрŋбıцопоєєі
乏uvetaıpıб $\mu \dot{\omega} v$ VENUS ins Bépoıas．

Н бхєєiaøף тои пакє́тои， бтпріхӨŋкє бтп μ ккро́хроv $\epsilon \mu \pi \epsilon$ ipia Tns Mnxavoypáфŋons Bépoıas пảv ω oтŋ ठıaкіvŋоп каı
 апотє入оüv то кат ${ }^{`} \epsilon \xi$ охŋ்v

xрŋбıиопоıท்Өŋјкаv баv про́типо о о бıабıкабієя （параүшүท்s каı 入оүıбтıкท்s） поu Є̇xouv avantuxӨєi aпȯ

Пєрıббо́тєрєऽ плпрофорієऽ：
Mnxavoүрáфпопп Bépoıas OE
Kєvtрікท்s 269
（0331）21841

H M．O．SOFT ПРOГРAMMATIZEI

VIDEO CLUB
ФAPMAKEIA
ГIATPOI
－$\triangle I A \Phi O P I K H ~ \triangle I A ~ N N \Omega \Sigma H ~$ A
－Σ TATI Σ TIKH ANAAY ΣH A乏OENRN ANAIIOHEIO－ nOTIAE
－ANTIIPAEEII OY乏I ΩN ФAPMAK Ω

NOMAPXIE

ПPORPAMMATIEMO乏 \triangle HMO－乏I Ω N EחENAY乏ERN

M Ω PAÏTH ${ }^{-}$- $A \Sigma K A P H \Sigma_{\text {A.E. }}$

 - Mnxavopyávaón kai tov autouatioró • үрафві́ $\omega \mathrm{v}$, ктıрі́ $\omega \mathrm{v}$, єрүоотабі́ $\omega \mathrm{V}$

Computer ALTOS USA
Гev. Avtimpoomпzía

Computer CORONA USA
Геv. Avtimpooшпгía
Klöckner-Moeller W.Germany Aпокл. Avtimpooшпгía EkTumbtéc Datasouth USA

「ev. Avtimpoowneía
Дıбкетtes DIDAK Canada
Геv. Avtimpoowneía

(畣) Klöckner-Moeller
datasouth AXIOM

Апб то 1960 oтпи пратопорі́а үиа тпи

M Ω PAÏTHE- $A A \Sigma K A P H \Sigma$ A.E.
 ETAIPIA TEXNIK

KENTPIKO AOHNA AEID KHDIIOY 22 \& KABANAI - 10447 AOHNA - THA: 5134311 (5 RPAMMEI)
YOOKATAITHMA OEE/KHI N ETNATM 302-542 48 OEL/NWKH. THA: 300482.300114 THNETP: MORALEX YTOTATAITHMA TATPQN B MNEIPOY 73-282 24 กATPA. TMA: $333.483 .333484 \mid$ TELEX: 225254 MORA GR.

Пávта عіхацц тіs $\varphi \theta \eta$ vóтєрє؟ т $\mu \varepsilon ́ \varsigma * .$.

 عivaı \sum toupvápa 47

MCAT COMPUTERS
Іппокра́тоис 57, AӨウ்va 10680

$T \eta \lambda .36 .16 .690,36.43 .044$

ミtoupvápa 47, AӨท்va 10682
T $\eta \lambda .36 .03 .594,36.02 .043$

Típa;
 , пои入áue aкóua μ^{\prime} autés!

digitized by greekrcm.gr

غ́xєtє про́B入nఘa oxeoíaons；

 n ATKO проочéper uis גứoars ィ\＆AUTOCAD．．．То про́ypaцца oxeסiaons AUTOCAD eivaı прஸ்ta an ò ò éva ıoxupótato oxeठiaotikó epya入eio． Акоגоиठві єпакріВஸ்s tis evto入és oas yıa tnv Ypriyopn
 каı прооариózetaı оє по入入е́ऽ हІסוкÓtntes ónç：
－APXITEKTONE Σ
－MHX．HЛEKTPOIOГOI
－ПОЛ．MHXANIKOI
－ТОПОГРАФОІ
－$\triangle I A K O \Sigma M H T E \Sigma$
－£xعסıaotés BIOM．£XEDIQN к．$\lambda . п$ ．
То про́үрациа AUTOCAD גeitoupyei $\mu \varepsilon$ ólous tous Yv由otoús Miкроӥпо入оүıøtés

E入átє va ouzntnoouน то ठiкó oas про́ $B \lambda n \mu a$ yia va Bpoúue in סikn oas λ ưon．

kai PLOTTERS（HoUston Instruments）

－Oı Plotters Houston Instrument eivaı ońuepa
 Архıте́ктоves кaı Mnxavikoús סıótı проoчépouv：
－Апó 1－14 пévves oxeठiacns סrạópev tữ＠v．
－Пגátos oxeठiaons anó 21 вк．（A4）ह́ळs каı 96 єк．（АО）оє опоюобпппот тüпо xaptioú．
－Taxútnta oxeסiaons ano 4 ips écos 22ips．
－Resolution 0，001＂（ $0,025 \mathrm{~mm}$ ）
 $\mu \dot{o} 0 \omega \mathrm{~V}$ CENTRONICS parallel ñ RS232 serial．
－Г $\lambda \omega \dot{0} 0 a$ oxeठiaons DMP－L пpooitn
 （BASIC，FORTRAN к．л．п．）

Ta проурáццатá pas кaı or plotters

 $\mathrm{Lav} \mathrm{\varepsilon i} \mathrm{\omega v}$ к．$\lambda . п$.

Oı\＆Ovị véa

\triangle YNAMIKH

ANTEПIOEइH TH乏

 OLIVETTI
H Olivetti napouoiaqє

 пápa по入入á véa проїóvта otףv ék $\theta \in \sigma \eta$ tŋs SICOB． Мєтаگu் autüv， пробшпाко̇ऽ uпо入оүוбтท்s M 24 SP пои апотє λ єі
 24，o бта θ цós єpyaбias M $24 / 3270$ ，oו super micros 3B2／400 каı 3B15（ $\sigma \epsilon$ ouvepyaoia $\mu \in T \eta \vee$ AT \＆T ）， $\mu i a \quad \sigma \in!\rho \dot{a} \in к т u \pi \omega t \dot{\omega} v$ кaı
 үрафонпхаvє́s．
OM 24 SP eivaı to
 twv PCs ths Olivetti．H oxєסiaan tou єivaı mapó μ оıa $\mu \in \in$ кeiv η tou M 24 ， пароибıá弓єı ó $\mu \omega \varsigma$ орıб $\mu \dot{\mathrm{v}} \mathrm{va}$
 ӧпшs $\mu \in ү а \lambda$ и̇тєрп тахи்тпта， Ėvav $\beta \in \lambda$ tim μ èvo disk controller，$\mu \in ү a \lambda$ u̇t $\epsilon \rho \eta$ $\mu v \grave{\mu} \mu \eta$ к．д．．Н тахйтпта тŋs CPU（8086）Eivaı Tüpa 10 MHz ，єvш் η тахи́тŋта тои
kava入ıoú DMA єivaı 5 MHz ． O M 24 SP проофє́рєтаı $\mu \epsilon$ standard $\mu v \eta \dot{\mu} \eta 512$ Kbytes （ $\epsilon \Pi \epsilon к т$ ब̇ $\sigma ı \mu \eta$ бта 640 Kbytes） єvய் $\pi \epsilon \rho ı \lambda a \mu \beta \dot{a} v \in ı$ ktı $\mu i a$ $\mu o v a ́ \delta ઼ a ~ \sigma к \lambda \eta \rho o u ̉ ~ \delta i \sigma к о u ~ t \omega v ~$ 20 Mbytes．Eivaı miṅpクs
 hardware kaı software $\mu \in$ то

 ипобтпрізєІ то λ еІтоирүіко் бu̇otnua XENIX

Tó𧰨o o M 24 SP ȯбo kaı o M 24，μ пороúv т $\dot{\rho} \rho a \mathrm{va}$ uпоотпріңоuv то GEM （Graphic Environment Manager）．H Digital Research Inc．$\sigma x \in \delta i a \sigma \epsilon$ катд́ mapayy λ ia ins Olivetti，$\mu \mathrm{ia}$ є́к δ oon tou GEM пои
 סuvatótпtes tuv סúo uпо入оүוбтüv TクS． ミиүкєкрıиєंva，о̇таи то GEM хрŋбıиополєітаı $\sigma \epsilon$ бuvסuađ弓ó $\mu \in$ т η v ка́рта EGC（Enhanced Graphic Color）ins Olivetti， пробфє́рєІ graphics 16 xр $\quad \mu \mu$ átwv $\mu \in$ ठıакріто́тпта 640×400 pixels．

To software nou єivaı ßaбıə μ ėvo бто GEM，
$\pi \epsilon \rho ı \lambda a \mu \beta a ̇ v \in ⿺ ~ т а$ проүра́ $\mu \mu$ ата GEM Desktop， GEM Draw（yıa $\sigma x \in \delta i a \sigma \eta$ ）， GEM Wordchart
（ $\epsilon \Pi \in \xi \in \rho$ yafia кєıие̇̀vou kaı үрафікє́s парабта́бєIS үIa єாIXєIpウ்бєis），GEM Write （ $\epsilon \pi \in \xi \in \rho$ уáia $\kappa \in \| \mu \in \dot{v}$ vou），GEM Graph（graphics
єпихєıрர்бє （yia pixel graphics）．

O otaӨuós єpyaoias M 24 －3270，ouvסúả̧eı TIS גєitoupyies tou tepuatiкоú 3270μ е тіS ипо入оүוбтікє́s סuvatótŋtes tou M 24.

каӨüs каı סuvatótŋта xคท்ons є̇ $\mathrm{yx} \rho \omega \mu \omega \mathrm{v}$ graphics kaı mapaӨúpwv．O M 24. 3270 єivaı бu μ ßatós $\mu \epsilon$ éva $\mu \in ү a ̈ \lambda o$ арı $\Theta \mu$ о́ пакє́т ωv graphics．Enions，$\mu \in T \eta$ x $\rho \dot{\sigma} \sigma \eta$ twv парaӨúp ωv ，o xคர்бтпs tou μ пореі va

$$
* * *
$$

H ouvepyaria ins Olivetti $\mu \epsilon$ inv AT \＆T ，фaiv \in taı ótı пŋүaiveı ka入á．H oıкоүє̇vєıa 3B єпектєivetal $\mu \in T \eta v$ avayyє入ia tou véou super－ micrо 3B2／400 пои μ порєі va uпоотпррі $\xi \in$ таито́xpova 25 хрウ்бтеS каı tou 3B15，

evȯs minicomputer nou uпоотппріろєІ таuтóxpova нёхрı 60 хрウ்бтєऽ．

О 3В2／400 хрПбıиопоьєі то μ ккроєпє $\xi \in \rho$ рабтர் WE 32100 бта 10 MHz ， єvய்，проаıрєтıка́ $\delta i v \in T a ı ~ \mu ı а ~$ MaӨпиатікп் BoŋӨŋтікп் Mováda поu єктє $\quad 220$ форе́s үрпүоро́т $\in \rho$ тіS
 кúpıa μ vท் $\mu \eta \mu$ пореі va фӨáのєı μ éxpı ta 4 Mbytes каı $\mu \in$ т $\eta \vee$ пробӨウ்кп єvós $\epsilon \xi \omega \tau \in \rho$ Ікоú disk controller поu θ a єivaı є́тоıцоs ото té λ оs tou Xpóvou，η пєріфєрєıакท் $\mu v \grave{\mu} \mu \eta$ Өa $\mu п о р є i ~ v a ~ ф Ө \dot{a} \sigma \epsilon!~ t a ~ 720 ~$ Mbytes．

O μ ivı uno גоүıбтn்s 3B15，
 WE 32100 пои λ еітоируєі ora 14 MHz кaı $\mu \mathrm{ia}$ MaӨпиатікท் BoŋӨŋтікர் Mováठa．H кúpıa $\mu v \check{j} \mu \eta$ тои фӨáveı $\mu \dot{\mu} \mathrm{X}$ рı ta 16 Mbytes каı $\mu \in \tau \eta v$ пробӨウ்кп єvós $\epsilon \xi \omega T \in \rho ı к o u ́ d i s k$ controller o 3В15 μ порєі va uпоотпрі $\xi \in$ ו $\mu \dot{\epsilon}$ хрı 2.2 Gbytes．

Мє тпи пробӨウ்кп тои ката̇ $\lambda \lambda \eta \lambda$ ou hardware кaı software，ò λa та μ оvt $\dot{\epsilon} \lambda a$ ins $\sigma \in І \rho a \dot{s} \mu \pi о \rho o u ́ v ~ v a$ бuv $\delta \in Ө$ oúv $\mu \in$ ठіктua єпוкoivwvias twv mainframes tis IBM．

Апо் $\pi \lambda \in u \rho a \dot{s}$

 $\pi \in \rho І ф \in \rho \in \iota a \kappa \dot{\omega} v, \eta$ Olivetti avク்YYєі $\lambda \in$ тоus прйтоus

 véol éturntés Өa ßađi弓оvtaı $\sigma \epsilon$ סıафорєтікє̇ऽ texvodoyies（dot matrix， μ apyapitas，non－impact）каı проopi弓ovtaı yıa

 Yivєı ப̇бтєрa aпȯ $\mu \in \rho ı к о$ и̇s $\mu \eta \dot{\eta} \in \varsigma$.
 пароuбıȧбтŋпкаv єivaı ta DM 280 kaı 290 （dot matrix，

єктüாwon סıாגn்s катєúӨuvans， 160 cps yıa normal mode），DM 285 kaı DM 295 （ $̇ \mathrm{YX} \rho \omega \mu \in \varsigma$ єкסóбєIS T ωv пропүоu̇ $\mu \in v \omega v$ $\mu \mathrm{ovt} \dot{\epsilon} \lambda \omega v$ ）DY 300 （ μ аруарітаs， 30 cps ）kaı té入os DM 580 kaı DM 590 （dot matrix，по入入оі тро்поו єктünwons，סuvatótŋtes graphics）．

Té入os η Olivetti пароиชiaбє $\mu i a$ véa $\sigma \in \rho \rho \dot{a}$ $\eta \lambda \in \kappa т \rho o v i k \dot{\omega} v$ урафонпха⿱㇒⿻丷木心夊，оІ опоієऽ $\mu \pi o \rho o u ̉ v$ va $\sigma u v \delta \in Ө$ oủv $\mu \epsilon$ $\mu \mathrm{ia}$ video oӨóvn Twv 12＂． Та прш்та μ оvт $\dot{\text { ® }} \lambda$ а тทऽ бeıpás tivaı ta ETV 240， ETV 250 каı ETV 350．H ypaфо η xavn் ETV 240 єivaı єфобıađ $\mu \in \mathfrak{v \eta} \mu \epsilon \mu \mathrm{ia}$ non－ volatile $\mu v \dot{\mu} \mu \eta$ twv 13 Kbytes kaı éva єkturniti $\delta ı \pi \lambda \dot{s}$ kat тахӥтптаs 20 cps ．
Проаıрєтіка́ μ пороúv va топо $\Theta є$ тПӨойv $\mu \iota \alpha$ цоváda yıa microfloppy twv 3 1／2＂ xшрŋтіко́тпtas 320 Kbytes，
 Twv 16 ท่ 32 Kbytes．

H ypaфоипxavi் ETV 250， пєріє̇Хє। $\mu v \grave{\mu} \mu \eta$ т $\omega v 64$ Kbytes kaı μ ia μ ová δa microfloppy twv 3 1／2＂ xшрптіко́тптая 320 Kbytes． Té̀ μ ovảda video display，twv 12＂поu ouvס＇єєTaI $\mu \in$ TIS
 ET．Пєріє́хєı $\mu v ฑ ் \mu \eta ~ \tau \omega v ~ 64$ Kbytes kaı èva ŋ̇ $\delta u ̇ o$ disk drives twv 320 Kbytes．

 ঠıбкє́та ка̇тш апо் то入єітоирүікó бйбтпй CP／M．

Пєріббо்тєреऽ
плпрофорієऽ：
Olivetti Hellas
Guateipwv 5， 9343435

H NCR

KATAइKEYAZEI PC

H NCR eкtós anó ta $\mu \in \sigma$ aia каı $\mu \in \gamma \dot{\partial} \lambda a$
 Tüpa otnv ayopá ठủo véous пробшпıкойs иполоуıбте̇ऽ $\mu \epsilon$ Tnv ovouacia NCR PC6 каı NCR PC8，tous onoious пароибiaбє про́бфата otn SICOB．To PC6，ĖXEI $\sigma x \in \delta ı a \sigma t \in i \mu \in \beta \dot{a} \sigma \eta$ то $\mu ı \rho о є \pi \epsilon \xi \in \rho$ раотர் 8088－2 $(4,77$ 门 8 MHz$) \in v \dot{\omega}$ бıатіӨєтаı проаıрєтıка் о ouveா€ $\xi \in$ рүáтர்ร 8087．H кєVтрıкท் $\mu v \eta \dot{\mu} \mu$ RAM ĖXєı xшрптіко́тпта 256 Kbytes кaı єivaı єпєкта̇எıиク $\mu \in ̇ \chi \rho ı ~ T a ~$ 640 Kb̀ytes．O PC6， avȧ入oya $\mu \epsilon$ то configuration，μ порєі va $\pi \in$ рıе́хєı 2 disk drives twv 5 1／4＂$\mu \in$ хшрทтіко́тпта 360 Kbytes to kaӨ́̇va ŋ் δ úo disk drives $\mu \epsilon$ X $\omega \rho \eta$ тוко́т \quad та 360 Kbytes kaı 20 Mbytes avtiotoixa．

H оӨóv η тои PC6，μ порєі va єivaı μ vóx $\rho \omega \mu \eta$ т ωv
 біакріто́тпта 640×400 pixels．H єпוкоוvwvia tou PC6 $\mu \epsilon \dot{\mathrm{a}} \lambda \lambda a$ бטбт $\dot{\mu} \mu \mathrm{ata}$ ， yivetal $\mu \dot{\epsilon} \sigma \omega$ єvós interface centronics $\dot{\eta}$ €vós бєıрıакои் RS 232 C，єvய்

入еітоируікȯ бüбтпй тои PC6 tivaı to NCR－DOS 2.11.

O סєüT
 －PC8，غ́xєı $\alpha u \xi \eta \mu \dot{\epsilon} v \in \varsigma$ סUvatȯtŋtes aфоu்
 80286 （ 8 MHz ）．O PC8， סıati θ etaı otףv ayopá $\sigma \epsilon$ $\delta \dot{o} \boldsymbol{\mu}$ оитє́̇да．То прш்то رоvté入o 3279－0101 $\delta, a \Theta \dot{\epsilon} \tau \in I \mu v \eta \dot{\mu} \eta$ RAM Twv 256 Kbytes，̇̇va disk drive Twv 1，2 Mbytes．To $\delta \in u ̈ T \in \rho o$
 $\mu \in у a \lambda \dot{T} \epsilon \epsilon \rho \eta \nu \dot{\mu} \mu \eta$ RAM
（512 Kbytes）kaı μ ıa
 Siokou twv 20 Mbytes． Ако̇ $\mu \eta$ ，ö PC8，ठıaӨ̇̇тєı є̀va бєıрıако̇ каı є̇va парá̀ло interface．

「ıa ta $\delta u ̈ o ~ \mu o v t e ́ \lambda a ~$ uпápxouv по $\lambda \lambda \dot{\alpha}$ options， ónws $\mu \mathrm{a}$ 亿пйтіко́s बuvєா $\Pi \in \in$ рyáтท்s 80287 ，
 twv 20 ท் 40 Mbytes，кáptes
 $\dot{\eta} \pi \alpha \rho \dot{\alpha} \lambda \lambda \eta \lambda \alpha$ interfaces к．$\dot{\alpha}$ ．

Пєрıббо்тєрєऽ
плпрофорієs via ta PC tis NCR

ミYミTHMATA OPR． NATIONAL

＾．A μ a入ias 34， 3224721

PRINIRONIX THE FIRST LINE IN PRINTERS

PRINTRONIX．

Oı єктипштє́ऽ тПऽ пıо пропүиє́vŋऽ ацعрıкаvıкท́s тexvo入oyias．
Апó $300 \mu \varepsilon ́ \chi \rho ı ~ к a ı ~ 2000 ~ L P M ~$ Гıa ó入ous tous uпо入оүıотદ́s
－kaı yıa IBM．

－kaı yıa Bare Code．
Гіа ó入єऽ тıৎ aváyкєऽ
－kaı үıa Tıৎ пıо бúvӨعtعৎ． PRINTRONIX
отŋv прผ́тๆ үрации́
ths texvonoyias tou aúpıo
－kaı тоu oń $\mu \varepsilon \rho a$.

АПОК＾ЕІІTIKOI ANTIПPOГתПOI
ГIA THN E＾ヘADA

DATVAM

DATAMEDIA A．E．

¿apavтапо́рои，Фwкаías \＆Aıүivךs 18547 Пعıрaı́́－Tך入．4819．815－9 Telex 21 （2639）NPGR 24 （1115）NPGR TӨ．80844， 18547 Пعııaıás

סı\＆Òvị vża

TA PC THE ZENITH

H Zenith，napoưiaбє बTh SICOB $\mu \mathrm{ia}$
véa $\sigma \in ı \rho \dot{a}$ пробшпıкüv uпо入оүıбтய̈v．То по
 $\sigma \in$ ı a s，єivaı to Z－200．

Mbyte）．
To disk drive tou

xшрптіко்тұта 1，2 Mbytes．H ঠıакріто́тпта tns oӨóvns fivaı 640X200 pixels （ μ ovóx $\rho \omega \mu \eta$ ）ท่ 320×200 （ $\mathrm{y} \mathrm{yx} \rho \omega \mu \eta$ ）．O Z－200

бu̇otqua MS－DOS 3.1 kaı єivaı бu $\mu \beta$ tós $\mu \epsilon$ tov IBM PC－AT．
$\star \star \star$
Ta à $\lambda \lambda a$ тріа μ оvт $\grave{\lambda} \lambda a$ тпs $\sigma \in \mathfrak{p a j}$ ，єivaı ta Z－148 （desktop），Z－138（Portable） каı Z－171（portable），пои モ̇Xouv по入入á коıvà

MAIN-FRAME Auvatótntes YIa MICRO Yno入oyiotés

- по λ апп

 - MSDOS • PCDOS • CP/M • CCP/M
'Eva проïóv tns
COMPUDATA EnE:
ФЗKISNOE NETPH 32-11361 AӨHNA TH^. 8235717, 8836780
 uท̃бтє то паро́v отク COMPUDATA.

COMPUTER
ONOMA
ETAIPEIA
OLOE/TAX. K $\Omega \Delta$.
ПО^Н

סuzovì vèa

Гіа пара́бєıүна，
 єпє $\xi \in$ руаотй tov 8088 （о
 CMOS Ékסoon 80C88）．H
 хшрПтіко்тпта 256 Kbytes kaı ta disk drives（éva ì סúo）fivaı twv 5 1／4＂，

Kbytes．H öóvn twv PCs，
Éxel סוaкрітótทta 640X200 pixels（ μ ovóxp $\omega \mu \eta$ ）$\dot{1}$

 ta avtiotoixa twv IBM PC．

Пєрібоотєрєs плпрофорієऽ： ELECOMP
Euyypoú 262
9514944

MAI 1000

H aцєрıкаvıки் єтаıріа MAI， $\theta \dot{\text { édovtas va єпектєiveı tn }}$
 тףs，mapoưiage σ TП SICOB
 ovouacia MAI 1000.

Ta кúpıa характпрı́ттıкд ins ßađıкṅs μ ovádas tou ouatńнatos，єivaı o $\epsilon \pi \epsilon \xi \in \rho$ үaotris IAPX 86 Tns Intel，$\mu \mathrm{v} \dot{\mu} \mu \eta$ RAM 128－512
 Өüpes RS 232 C каı $\mu \mathrm{ia}$ mapá $\lambda \lambda \eta \lambda \eta$ centronics．$\Sigma a v$ standard，umápxeI Ėva disk drive twv 5 1／4＂，סוח入n’s
 єуүрафウ்s $\mu \in$ хшрŋтіко́тпта 640 Kbytes．Акö $\mu \eta$ ，o véos PC ins MAI，ס̇́x drives twv 10， 20 门் 40 Mbytes．

H oӨóvn tou MAI 1000， Eivaı twv 12＂кaı
aпєıкоvi弓єІ 24 үрадие்ऽ т ωv 80 xapaктท் $\rho \omega v$ v μ бıакріто́тпта 13×11 бпиєіш yıа ка́ $\Theta є$ характп்ра．То плпктроАӧүıо，пєріє́хєІ 100 пліпктра，єк тшv опоішv та 10 єivaı проүра $\mu \mu$ атı̧ö $\mu \in \mathrm{va}$

Пєріббо்тєрєऽ плпрофорієऽ बтпv

ABACUS
Фа＾ñ́pou 52， 9216791

AANKA $_{\text {AE }}$ Me入avotaivies

Me入avotaivies，кабغ்тєs，пavtós túmou үıa
 $\varepsilon п \varepsilon \xi \varepsilon \rho ү а о т \varepsilon ่ \varsigma ~ к \varepsilon ı \mu \varepsilon ் v \omega v . ~$

KaӨapiろعтє tov
H／Y oas taктікá；

 va káveı $\lambda \dot{\alpha} \theta \eta$ ．

 тПта каı поıкıліа овıра́ тПऽ AF Automation Facilities Limited－England．

Ta проїvta AF Өa β ргітє впібпц，ота ка入д COMPUTER SHOPS kaı otous COMPUTER DEALERS

КАПОДI乏TPIOY 5， 17455 ANIMO乏，TH＾．：9839720，TELEX： 223297
ПРАТНРIO AЄHN』N：EYPIПIIOY 7， 10561 AЄHNA，TH＾．：3225469－3251454

MATNHTIKE Σ TAINIE Σ－$-\Delta I \Sigma K O I$－$\Delta I \Sigma K E T E \Sigma ~-~ M E \Lambda A N O T A I N I E \Sigma ~-~ B I N D E R S ~-~$
$\triangle I \Sigma K E T O \Theta H K E \Sigma ~-~ Ф I \Lambda T P A ~ O \Theta O N H \Sigma ~-~ K A \Theta A P I \Sigma T I K A ~ H / Y . ~$

OL\＆Òvị véa

NEA MONTEへA A

H SORD avฑ̇Yyєi入є $\sigma T \eta v$ є́к $\Theta \epsilon \sigma \eta$ SICOB סủo véous μ ıкройполоүібтє̇ऽ $\mu \in$ тףV ovoبaбia M 343 SX каı Unibox．

H кủpıa плакє̇та тои M 343 SX，пєрієєєє то $\mu ı к \rho о є п \epsilon \xi \in \rho ү а \sigma т ท ் ~ 80286(8)$ MHz ），то $\mu \mathrm{a}$ Өпиатіко் ouvєпє $\xi \in \rho$ рабтர் 80287 （5 $\mathrm{M} H z), \mu \mathrm{v} \dot{\mu} \mu \eta \mathrm{ROM} \mu \epsilon$ xwpఇтіко்тпта 16 Kbytes， RAM $\mu \in$ хшрптіко́тпта 1

Mbyte кaı $\dot{\epsilon} v a \operatorname{ma\rho a\dot {~}\lambda \lambda \eta \lambda o~}$ interface тúmou centronics．

Mia á̀ $\lambda \eta$ ка́рта，$п \in \rho і є ́ \chi \in!$ interfaces yıa dıaxtipıon ins $\mu \mathrm{a}$ ıкท்s $\mu v \grave{\mu} \mu \eta \varsigma, \delta \eta \lambda a \delta \dot{\eta}$ interfaces yıa DMA，yıa $\mu o v a ́ \delta \in \varsigma ~ \delta ı \sigma к \in T \dot{\omega} v(\mu \dot{\chi} \rho \prime 4)$ ）， yıa μ ováסєऽ đкגпроü סiokou
（ $\mu \dot{\epsilon} \chi \rho ı 4$ ）каı yıa μ оvá δa μ аүvŋтікñs taıvias．इav $\mu \dot{\epsilon} \sigma$
 xpクбıцопоוоu̇vtaı סúo disk drives twv 5＂каı 8
 1，2 Mbytes кaı μ ia μ ová δa бк入проú סiokou Wincheste

DESIGNED BY A COMPUTER FOR YOUR COMPUTER

סısọvị vża

twv 20 ர் 40 Mbytes．Ṫ̇ं $\lambda o s$, $\mu i a \dot{\alpha} \lambda \lambda \eta$ ка́рта $\pi \epsilon \rho ı \dot{\epsilon} \chi \in ı ~ \delta u ́ o ~$ interfaces RS 232.

H oӨóvn tou M 343 SX， е́хєı ичП入ウ் ठıакрıто்тŋта （720X500 pixels）．To плпктроло́yıo єivaı тu̇поu AZERTY $\mu \in 109$ плјјктра．To
 343 SX，єivaı to MRDOS тクs SORD пои єпוтрє̇пє। TПV таuто́xpov $\boldsymbol{\epsilon \kappa т \dot { \epsilon } \lambda \in \sigma \eta ~}$ по $\lambda \lambda \dot{\omega} v \in \rho \gamma a \sigma ı \dot{w}$ ．Aкö $\mu \eta$ ， uпápxouv по入入á є̇тоıца паке̇та үıа єипорıке́я єфариоүє́s．

Enions η SORD
 μ ккоӥполоуıбтŋ்，$\mu \in T \eta v$ ovouaбia Unibox，nou ßабі弓єтаı бто леıтоирүıко் бu̇бтпนa UNIX SYSTEM V． H ßacıкท் тоu סıáтаそп апотєлєітаı апо் тє́бтєра
modules．То при்то module，
 68010 （бта 10 MHz ）Tns Motorola кaı є́va пapá $\lambda \lambda \eta \lambda$ о interface centronics．To $\delta \in U ̇ T \in \rho o$ module，$\pi \in \rho \mid \in ̇ \chi \in I$ $\mu v \eta \dot{\mu} \mu \mathrm{RAM} \mu \in \mathrm{X} \omega \rho \eta$ тוко்т η та 1 Mbyte，η опоіа μ торєі va єпєктаӨєі μ е́хрı та 6 Mbytes． То тріто module tns
 סủo interfaces RS 232 C． Tं́入оऽ то тє́тарто module， $\mu п о р є і ~ v a ~ u п о \sigma т \eta \rho і \xi є ı ~$
 кaı ṫ̇бסє бк入прои் ठієкои тwv 5＂$\mu \epsilon$ xшрптіко́тпта 20 Mbytes．
इто ßабıко̇ configuration tou UNIBOX $\pi \in \rho ı \lambda a \mu \beta$ ȧv \in тaı $\dot{\text { Éva disk }}$ drive twv 5＂кaı μ ıa μ ová δa бк入nрои̇ סiokou Winchester twv 5＂$\mu \in$ хшрŋтіко́тŋта 20 Mbytes．To tєр $\boldsymbol{\text { atıко́ GDT }}$

6221 тои бuбтп́цатоs， апотєлєітаı апо̇ èva monitor twv 14＂кaı èva плпктроло́үıо тшv 109 плп்ктршv．

Пєріббо்тєрєऽ плпрофорієऽ：
$A \equiv A P \wedge H \Sigma A . E$.
Акабпиіац 96－98 3607836

APC III：H EK \triangle OXH TH乏 NEC $\Sigma T O Y \Sigma$ COMPATIBLES

Bađıбนе̇vos бто

 μ ккроєпє $\xi \in \rho \gamma a \sigma т \eta \dot{\mu} \mu \mathrm{PD} 8088$ пои «тре̇хєє» бта 8 MHz ，о APC III tns NEC μ maiveı otov ayய̈va $\delta \rho \dot{\mu} \mu$ ou Twv бuرßatüv personal，$\mu \epsilon$ прш்то атой тпv тахи்тпта́ tou．Eva $\delta \in$ U̇t $\epsilon \rho о$ €фо் $\delta ı$ ı， єivaı о про்б $\Theta \in$ тоऽ$\epsilon \pi \epsilon \xi \in \rho$ үaбтท்s μ PD7220 үıa
 TПS OӨövns，$\mu \in$ октш் xpüцата каı $\mu \in у \dot{a} \lambda \eta$ тахйтпта $\sigma x \in \delta i a \sigma \eta s$.

Méoa otף vootporia tns ＂філіко́тұтац＂проऽ то xpர்бтп，o APC III єivaı єфобıaб位vos $\mu \in$ poutives пои oठпүүoúv ava入utiká to
 tᄁs epyagias tou，$\dot{\omega} \sigma t \in$ va

 －EXEI 12

 ठıaфорєтікє̇ऽ $\lambda \in$ Ітоupyís， плєорєєкттиа пои фаivєтаı бафய்s $\sigma T \eta v \in \Pi \epsilon \xi \in \rho y a \sigma i a$ кєıи̇̇vou．

乏uvodєu̇ ϵ taı anó ठủo drives yıa סıбкє̇тєS，єvய் uпàpxєı каı η ठuvaто́тпта

Грท́үора，єи́кода，оıкоขоцıка́，α－

 $\tau \alpha \xi \cup ́ \tau \omega v \Sigma v \sigma \tau \eta \mu \alpha ́ \tau \omega v, \alpha \nu \tau \imath \gamma \rho \alpha ́ \varphi o-$ $\nu \tau \alpha \varsigma \tau \alpha \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau \alpha ́ \sigma \alpha \varsigma \alpha \pi o ́ \mu \iota \alpha$

КААҮПTONTAI ПАN Ω АПО 200 $\triangle I A Ф O P E T I K A$ FORMAT $\triangle I \Sigma K E T T \Omega N$

ALIMGS
COMFF－RTEF SEFVUTCES

НПЕIPOY 4， 17456 AAIMOE
ТНА．99．20．416

THTH
 I Brcomptel

To
 WIGRO

ェA乏 ПAPOYミIAZEI

 TH 乏EIPA－IBM FULL COMPATIBLE

PYTHIA

－ 8088 CPU， 16 BIT
－ 8087 COPPROCESSOR
－ 4 DMA CHANNEL 8237
－ 8 INTERRUPT CHANNEL 8259
－ 256 KB DRAM（ 640 KB MAXIMUM ON BOARD）
－ 8 KB BIOS
－ 64 KB EPROM SPACE － 8 1／10 EXPANSION SLOTS
－ 2×360 KB FLOPPY DISK DRIVES －IBM STANDARD CODE KEYBOARD
12＂AMBER MONOCHROME DISPLAY
－ 1 PRINTER PORT（CENTRONICS）
－ 135 WATT POWER SUPPLY
－ 110 MB WINCHESTER DRIVE UP TO 40 MB － 2 SERIAL PORT（RS232）

Aкópŋ бтоu̧ vદ̇ous Xம்pous tou AMSTRAD 8256 AMSTRAD 6128 AMSTRAD SPECTRUM ATARI ELECTRON COMMODORE

464－664
PLUS－ 48 K
520

ェЕ КАТАПヘНKTIKE TIME

－AME O－YחEYOYNO SERVICE АПО ТО ЕРГОГТАГІО ПАРАГЛГНГ
－ЕГГҮНMENA ПРОГРАММАТА
－£YNEXH Y YПOミTHPIEH META TH П $\Omega \wedge$ H ΣH
－EMПOPIKO SOFTWARE
－EIAIKE EФAPMOГEइ

T I EINAI H MEMOXCRAFT；

Єuүatpikṅ tŋ¢ MEMOX
ABEEH，аитіпробш்тоט т ωv COMMODORE
COMPUTERS，η
Memoxcraft，sivaı to mı

 COMMODORE．

इкопо்я тпऽ عivaı，η
 ка́ $\theta \varepsilon$ ті，поט афора́ тŋи COMMODORE，ka $\theta \dot{\omega} \varsigma$ к кa тท $\sigma \omega \sigma \pi \dot{\eta} \pi \lambda a \iota \sigma i \omega \sigma \eta ~ \tau \omega \nu$ COMPUTERS поט סıaӨ்̇єィ

Mıа єпібкв η Өa ס $\dot{\omega} \sigma \varepsilon ı$

 ка̇тохоৎ，hobby $\dot{\eta}$ business computer，вітє $\mu \varepsilon \lambda \lambda$ оитіко́s aүopaotท்я．Kaı то киріо்тяро，η Memoxcraft бац пробфغ்рєı μ ıа
 поט оац крата́ отпи «прш்тп үраципं＂тทऽ техиo入oүiac．

TI ПPOEФEPEI H MEMOXCRAFT；

－＇EkӨran enionc t t C－128
 бعıрác PC－10， 20 －C－ 900 каı AMIGA
－Етоида втаүүє $\lambda \mu \alpha т$ кка проүрадицата／паквта，

 S／W $\mu \varepsilon$ па́vш апо் 5.000 тіт入оис пои ธuvėxยıа avaveய்vetaı．
 проүра́ $\mu \mu$ та，ато́ Aүүخіа каı Ацгрıкท் поט غ́pXovtaı кá $\theta \varepsilon$ $\beta \delta o \mu \alpha \dot{\sigma} \alpha$ ．
－Bıß入ia каı перıобıка үıа COMMODORE．
－Auroo SERVICE．
－Tøึா்่кıа，UTILITIES， EPROMS，MODEMS， INTERFACES，\triangle IKTYA
－To इПОY \triangle AIOTEPO： －Auعon عпафท் үіа

 avӨрїпоис वтทи E $\lambda \lambda \dot{\alpha} \delta \dot{\alpha}$ ，пávo ota COMMODORE COMPUTER．

ПOY BPIEKETAI H MEMOXCRAFT；

Є்̇ıбоৎ 10 \＆
Міхалакопои் ${ }^{\text {о }}$ ，Зоऽ о́рофос．Eivaı єкто́с ठакти入iou，$\alpha \lambda \lambda \dot{\alpha}$ каı бто
 апо் то Хі λ точ）．$\triangle 1 a \theta \dot{\varepsilon} т \varepsilon ı$ ävetouc，عuxápıotouc кaı
 о்тоט μ ккоі каı $\mu \varepsilon ү व \dot{\lambda} \lambda$ о μ торои் xшріс каці $\dot{\alpha}$ טпохрغ̇шö va aro入av̇oouv
 та COMMODORE COMPUTERS．

ПIO इYTKEKPIMENA OA DEITE：

E＾ヘHNIKA ПAKETA

 C－64／C－128：АпоӨท்кп，Пع入а்тєऽ
 （карті̇ла），Лоүібтікท் Eoóठ $\omega \nu$－E§ं̇ठ ωv ，

ПроиŋӨвитє́я，
 Парако入оӥӨทon
А Tıио入óүпøๆ，VIDEO CLUB， Іатрıко்，छعиобохєוако்， Еотıато́рıа，Практоряіа

Word Processing．
ПAKETA PC：
Гعиıки் Лоүıотıкท்，АлоӨп்кп
 （үıа тท்pクon $\beta_{1} \beta \lambda i \omega \nu \Delta^{\prime}$ karnyopias），Word Processing，Boutique，

תPAPIO KATA乏THMAT®N

$\Delta \eta \mu$ óáa＇Epүa （ поүаріабиoi－
 CLUB，Δ ızuӨuvorioүpà φo c， D．BASE II，Multiplan， LOTUS 1，2，3，SUPER CALL，इevoסохєıaкa่， Практорвіа Таєєбiшv．

EİAГOMENA «EIAIKA» ПРОГРАММАТА С－64／ C－128
Assembler tutor，Micro Assembler Development， PILOT，LOGO，FORTH， COMAL，SIMONS BASIC， Future Finance，EASY
FILE，Introduction to Basic， Easy Script，Easy Spell，
Programmers UTILITIES， Music Maker，All Games．

AEEEOYAP

 HARDWARE：E入入пиıкоi характṅреऽ үіа о̀ $\lambda \alpha$ та проӥӧvта，FAST LOAD EPROM Yia C－64
 үрпүооо́тяра），SPEACH SYNTHESIZER，Interfaces， MODEMS，MULTIUSER SWITCH NETWORK，MIDI INTERFACE，

Плпктродо́ үıа Movaıкп்я， Joysticks，Paddles， BARCODE－WRITER．

SERVICE：

To á $\psi o \gamma o$ ，service $T \eta$ ， MEMOX घival ठitлa oac
 $\mu \varepsilon \mu ı \alpha$ о $\mu \dot{\alpha} \delta \alpha$ عוбוк
 пои μ торойv va λ ט̇бouv
 пароибוабтои் ото $\mu \eta X a ́ v \eta \mu \alpha \dot{\alpha}$ oac．

MIIOPEITE NA MAE ЕПIгKЕФӨЕITE：

Oı ш́pec $\lambda \varepsilon ı t o u \rho \gamma i a \varsigma ~ t \eta \varsigma ~$ MEMOXCRAFT عivaı каӨŋицрıvá，єкто́¢ Kирıакท்я．תPAPIO KATA乏THMAT Ω N．

C＝commodore COMPUTER

©ETIDOE 10 \＆ MIXA \wedge AKOПOY $\Lambda O Y$ TH Λ ．： 7238958

סıcovị vża

 H оӨövŋ пои пробфє́рєта। єivaı $14^{\prime \prime}$ ，$\mu \dot{\epsilon} \boldsymbol{\gamma} \in$ Өоऽ пои $\epsilon \xi a \sigma \phi a \lambda i \zeta \in I \dot{a} v \in T \eta$ aváyv $\omega \sigma \eta, \mu \in u \psi \eta \lambda \dot{\eta}$ бıкрıто́тпта каı характи̇рєऽ

H $\delta \mathbf{\delta} \in \dot{u} \theta u v a \eta$ tns NEC oтףv Ayy入ia єivaı：NEC Freepost，20－24 Lonsdale Road，London NW61YP．

MONA A इYNOE $\mathbf{~ H \Sigma}$ OMINIA乏

To μ оvt $\dot{\text { ® }}$ ィ SCIO TYPE \＆ TALK єivaı $\mu ı a \mu$ ováda бúv $\Theta \in \sigma \eta$ ，opi入ias， $\beta р є т а v ı к \grave{\varsigma}$ катабкєиท்ऽ，пои μ порєі va хрпбıиопопŋ θ єі $\sigma X \in \delta$ óv $\mu \in$ ódous tous ипо入оүıбте்ऽ каı $\mu \in т а т р є ̇ п є ı ~$

кєї $\mu \in \mathrm{va}$ тuпш $\omega \dot{\mathrm{v}} \mathrm{va} \sigma \in \mathrm{ASCII}$, $\sigma \in$ профорıкர் орı入ia бта aүү入ıкả．

Періе́хєı то
$\mu ı к \rho о є п \epsilon \xi \in \rho$ үабтர் Z80，èva

 8Kbytes，$\mu v \dot{\mu} \mu \eta$ RAM 2 Kbytes，éva mapá $\lambda \lambda \eta \lambda o$ interface centronics kaı סủo

бєıрıака̉（RS 232 каı RS 423）．

H μ ová δa סıaӨ̇̇tєı

 фӨо்үүшv，ıкаvótŋта профорás т ωv apı $\theta \mu \omega \dot{v}$ ， каӨய̈s каı тwv on $\mu \in i \omega v$ тои סo八入apiou，ths 入ipas otep入ivas kaı twv
apı $\Theta \mu \eta$ тıк $\omega \mathbf{v} \sigma u \mu \beta o ̈ \lambda \omega v$.
－АА入а характпрıотıка̇，єivaı $\eta \rho \cup \theta \mu ı \dot{\partial} \dot{\mu} \in \mathrm{v} \eta$ тахйтпта одı入ias каӪ̈s каı оı $\rho u Ө \mu ı \zeta \dot{\partial} \mu \in v \in S$ пau̇бєIS avá $\mu \in \sigma a$ $\sigma T \iota \varsigma ~ п \rho о ф є \rho о ் ~ \mu є v \in \varsigma ~$ Фрáđधıs．
 280X230X95 хı入ıобта́ каı亏uyi̧eı סủo kı入ả．

0 COSMOS Computer

TO

C commodore C 64 \＆128，sinclair SPECTRUM QL ANSTRAT 464，PCW 8256，

CASIO，EPSON p．c．\＆Printers．

To $\mu \varepsilon$ yàho Computer shop

Eto Computer Club

Tóxoumع そavanii．To COMPUTER CLUB ठعv દi－ vaı uayazi oav óaa t＇ànลa．To computer
 поu avanảve，סouล̨ยu̇ouv kaı пaỉouv $\mu \varepsilon$ tous computers．Eiuaote пávta סinतa ơ autóv поu

 $\mu a Ө n \dot{\mu}$ ata BASIC，غ̇tбı поu үpriyopa каı aпоסо－
 vnuá tou auta nou Өغ̇הをા．ExOu computers nou oas عvठıa甲غ́pouv，甲uбוкá $\mu \varepsilon$

 vo．

Ta Xрıбтоúvevva；Гıa ta Xpıбтоu̇yevva ழtıá－

 Өa aпоктñoouv COMMODORE，SPECTRUM in AMSTRAD．Kaı tn μ oıpáZou $\mu \varepsilon \sigma^{\circ}$ ónouc！Eit ε غ่－

 кávtє $\mu \mathrm{Ia}$ bónta anó to CLUB，Kı عลáte va пà－

 ลa．

1.Пробю $\dot{\varepsilon} \rho о \cup \mu \varepsilon \quad \chi \alpha \mu \eta \lambda \dot{\varepsilon} \varsigma \quad \tau \iota \dot{\varepsilon} \varsigma$.

 $\pi \rho о \sigma о \mu о i \omega \sigma \eta \varsigma \kappa \alpha \iota$ editing к $\alpha \theta \dot{\omega} \varsigma \kappa \alpha \iota$ $\tau \eta v \varepsilon \rho \gamma о$ оонкю $\sigma \chi \varepsilon \delta i \alpha \sigma \eta \dot{\eta} \mu \alpha \varsigma$ бє $\mu i \alpha$ τ тобо ка兀 $\alpha \pi \lambda \eta \kappa \tau \iota \kappa \dot{\eta} \tau \iota \mu \dot{j}$ ．Y $\pi \dot{\alpha} \rho \chi \varepsilon \iota$

7. Me $\tau \iota \varsigma$ §úvatóтŋ $\tau \varepsilon \varsigma$ local editing к $\alpha \iota$ Block mode transfer，π ov $\chi \rho \varepsilon \dot{\alpha} \zeta \varepsilon \sigma \tau \varepsilon \gamma \iota \alpha$ v α

Kaı ழибıкд̉ $\delta \varepsilon v$ عivaı μ ỏvo $\alpha \cup \tau \dot{\alpha} . \Sigma \varepsilon \pi о \sigma o ̇ \tau \eta \tau \varepsilon \varsigma ~ \gamma ı \alpha$ OEM $\delta i \alpha \mu о \rho \varphi \dot{\omega} v o \nu \mu \varepsilon \kappa \alpha \tau \dot{\alpha} \pi \alpha \rho \alpha \gamma \gamma \varepsilon \lambda i \alpha$ то $210 \sigma \tau \eta \nu \varepsilon \mu \varphi \dot{\alpha} v i \sigma \eta$ ，$\tau \eta \nu$ $\pi \rho о \sigma \omega \pi \iota к о \dot{\tau} \eta \tau \alpha$ к $\alpha \iota$ то̀v $\pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \sigma \mu$ о̇ غ̇ $\tau \sigma \iota \dot{\omega} \sigma \tau \varepsilon \vee \alpha$ $\kappa \alpha \lambda \dot{\pi} \pi \tau \varepsilon \iota \alpha \pi \dot{\lambda} \lambda \nu \tau \alpha$ 亢ıऽ $\alpha v \dot{\alpha} \gamma \kappa \varepsilon \varsigma ~ \sigma \alpha \varsigma$.

2.Mỏvo $\sigma \varepsilon \beta \dot{\alpha} \rho \circ \varsigma ̧ \tau \omega$ $\delta \cup v \alpha \tau о \tau \eta \dot{\eta} \omega v$ ．По $\lambda \lambda \varepsilon \dot{\varepsilon} \varsigma ~ \varphi о \rho \varepsilon ் \varsigma ~$

 $\kappa \alpha \tau \alpha \sigma \kappa \varepsilon \cup ท ่ ~ \kappa \alpha \kappa о \varphi \tau \iota \alpha \gamma \mu \varepsilon ் v \omega \nu ~ к о \cup \tau \iota \dot{\omega} v$, $\alpha \lambda \lambda \dot{\alpha}$ ó $\pi \omega \varsigma \beta \lambda \dot{\varepsilon} \pi \varepsilon \tau \varepsilon$ то AMPEX 210 вivaı єрүоvоиıко̇тато．

$8 \mathrm{E} \pi \iota \pi \lambda \dot{\varepsilon} \circ v, \varepsilon v \sigma \omega \mu \alpha \tau \omega \dot{v} \varepsilon ı \tau \eta$
－－$\delta v v \alpha \tau o ̇ \tau \eta \tau \alpha \pi \rho о \sigma о \mu о i \omega \sigma \eta \varsigma 16$ $\gamma v \omega \sigma \tau \dot{\omega} v \tau \varepsilon \rho \mu \alpha \tau ⿺ \kappa \omega \dot{v} \mu \varepsilon \tau о \dot{\alpha} \gamma \gamma \imath \gamma \mu \alpha$
 $\pi \varepsilon \rho ı \lambda \alpha \mu \beta \dot{\alpha} v o v \tau \alpha \iota ~ \tau \alpha$ Televideo 910， 910 ＋，912， 920 ท̇ 925＊．．．

14.
$\mathrm{Kı}_{\imath} \alpha v \chi \rho \varepsilon เ \dot{\alpha} \zeta \varepsilon \sigma \tau \varepsilon \dot{\varepsilon} v \alpha$ $\boldsymbol{\sigma \chi \cup \rho о ் \tau \varepsilon \rho о ~ \tau \varepsilon \rho \mu \alpha \tau ı к о ́ , ~} \mu \varepsilon$ $\alpha \kappa о ̇ \mu \alpha \pi \varepsilon \rho \iota \sigma \sigma о ் \tau \varepsilon \rho \varepsilon \varsigma ~ \delta \cup v \alpha \tau о ̇ \tau \eta \tau \varepsilon \varsigma$ ，

 AMPEX 230.

3. Проькіб $\alpha \mu \varepsilon$ то AMPEX 210 $\mu \varepsilon \mu 1 \alpha$ oӨóvŋ $14^{\prime \prime}$ ，$\pi о \cup$ $\pi \varepsilon \rho \iota \sigma \tau \rho \dot{\varepsilon} \varphi \varepsilon \tau \alpha \iota$ к $\alpha \iota \quad \alpha v \varepsilon$ Кокатєßаivєı，
 $\sigma \tau \eta \gamma \omega v i \alpha \pi$ оט $\varepsilon \pi \imath \theta \cup \mu \varepsilon i \tau \varepsilon$ ．＇E $\tau \sigma \iota$ вival $\pi \dot{\alpha} v \tau \alpha \dot{\alpha} v \varepsilon \tau \circ \quad \sigma \tau \eta \chi \rho \eta ं \sigma \eta \dot{\alpha} \sigma \chi \varepsilon \tau \alpha \mu \varepsilon$ то $\sigma \eta \mu \varepsilon$ io π то $\kappa \dot{\alpha} \theta \varepsilon \sigma \tau \varepsilon$ ．

－$\tau \varepsilon \rho \mu \alpha \tau \kappa \dot{\text { A MPEX }} \mu \varepsilon \dot{\varepsilon} \xi \zeta \imath$ $\mu \eta \dot{\nu \varepsilon \varsigma} \varepsilon \gamma \gamma \cup ̇ \eta \sigma \eta \kappa \alpha \iota \dot{\varepsilon} v \alpha \pi \alpha \gamma \kappa о ̇ \sigma \mu \iota$ ठiктиo service．

F K $\alpha \iota \mu \iota \alpha$ кітрıvך, $\xi \varepsilon к о и ̇ \rho \alpha \sigma \tau \eta ~$
 $\gamma \iota \alpha$ ви̇коло $\delta \iota \dot{\alpha} \beta \alpha \sigma \mu \alpha$. ($\mathrm{Av} \pi \rho о \tau \iota \mu \dot{\alpha} \tau \varepsilon$ $\mu \pi о \rho \varepsilon і \tau \varepsilon v \alpha \pi \dot{\alpha} \rho \varepsilon \tau \varepsilon \pi \rho \dot{\sigma} \sigma \imath \eta \eta$ оӨóv η $\chi \omega \rho і \varsigma \kappa \alpha \mu \dot{\alpha} \alpha \pi о \lambda \dot{\tau} \tau \omega \varsigma \alpha \pi \iota \beta \dot{\alpha} \rho \cup v \sigma \eta)$.

$17 \Gamma_{i}^{\prime}$ аито̇ $\lambda о \iota \pi o \dot{v}$, αv - $\chi \rho \varepsilon เ \alpha \dot{\zeta}$ દ $\sigma \tau \varepsilon \dot{\varepsilon} v \alpha$ $\kappa \alpha \lambda о \sigma \chi \varepsilon \delta \iota \alpha \sigma \mu \varepsilon \dot{v o} \tau \varepsilon \rho \mu \alpha \tau \iota \kappa \dot{,}, \mu \varepsilon$
 $\mu \alpha \varsigma . \Theta \alpha \sigma \alpha \varsigma ~ \delta \varepsilon i \xi$ оט $\mu \varepsilon \pi \omega \varsigma \mu \pi о \rho \varepsilon i \tau \varepsilon$
 $\pi \rho \alpha \gamma \mu \alpha \tau \iota \alpha \dot{\alpha} \chi \rho \varepsilon \iota \alpha \dot{\alpha} \zeta \sigma \sigma \tau$.
 عivaı ω раio $\mu \dot{\varepsilon} \sigma \alpha \kappa \iota ~ \dot{\varepsilon} \xi \omega$. M ε line
 $\varepsilon \kappa \tau \dot{\pi} \pi \omega \sigma \eta$ $\sigma \alpha \nu \sigma \tau \alpha \dot{\nu} \tau \alpha \rho$.

AMPEX

18.

To AMPEX $210 \pi \alpha \rho \alpha \dot{\gamma \varepsilon \tau \alpha \iota} \alpha \pi$ ȯ $\tau \eta v$ Computer Products Division $\tau \eta \varsigma$ Ampex Corporation, $\mu / \alpha \varsigma$ $\alpha \pi$ ó rıç Signal Companies.

[^0]

MICROFORCE 1：

 SYSTEM 68000 VMEH FORCE Computer пароибіабє то μ וкроӥполо－ YIGTク் microFORCE－1，tou опоіои η архıтекто⿱וкй єivaı
 VMEbus kaı тре̇Xєı то גєітоирүікó бúбтпйa Unix System V．

O microFORCE－1，

хрŋблиопоєєі то μ ıкроєпє $\epsilon \in \rho$ үабтர் 68010 пои тре̇хєı бта 10 MHz ，тп $\mu \mathrm{ovả} \delta \mathrm{a}$ MMU（Memory Management Unit） 68451 yıа поллаплеєя $\lambda \in$ ттоируієऽ кaı tov $\in \lambda \in ү к т ท ் ~ D M A ~$ （Direct Memory Access） 68450．Enions，unápxєı cache memory $\mu \in$ non wait state $\chi \omega \rho \eta$ тіко́т η тая 32 Kbytes，$n o u$ «бuvєıбфє́ $\rho \in!»$

ठıaфópwv λ еıтоupyıüv．
H $\mu v \dot{\eta} \mu \eta$ RAM Eivaı ठuvaرıкท̇ кaı є̇Xєı хшрптіко́тпта 1 Mbyte． $\Delta ı$ व́форa interfaces， uпобтпрi̧ouv ठu̇o xpர்бтеS， ϵ єाıкоıvшvia $\mu \in \epsilon \xi \omega T \in \rho ı к \dot{\alpha}$ бuбтท̇цата，$\mu \mathrm{i} a$ Өúpa yıa
 бклпрой סíкои Winchester twv 25 Mbytes kaı éva Floppy disk tou 1 Mbyte．Eni $\pi \lambda \in \notin \mathrm{ov}$ ， unápXeı Ėva slot yıa Tףv єпе்ктаб̈ тои бибтп̇иатоऽ．
 Unix System V anó тŋv FORCE，$\pi \in \rho ı \lambda a \mu \beta \dot{v} \in ⿺$ in үл山̈бба проүра $\mu \mu$ тьб μ ои C，тŋv Fortran 77，tov macro－assembler 68000， kaı èvav screen editor． － $\mathrm{A} \lambda \lambda \in \varsigma$ ү $\lambda \dot{\omega} \sigma \sigma \in \varsigma$ ón $\omega \varsigma \eta$ Pascal Sivovtaı $\xi \in X \omega$ pıotad．

To Unix System V $\mu \in \dot{o} \lambda \in \varsigma$ tis utilities，tov compiler kaı

т η V тєк $\mu \eta \rho i \omega \sigma \eta$ ，пои то ouvodєu̇єı，aпaıтєi μ ia xшрŋтוко்тпта 13Mbytes．H μ ováठa Winchester
（ 5 1／4＇＇）пои хрпбıцопоєєі To microFORCE 1 е́Xeı $\mu \mathrm{ia}$ Formatted хшрптıко́тпта 22Mbytes anó та опоіа，та 7Mbytes $\mu \dot{\operatorname{c} \text { vouv } \epsilon \lambda \in \dot{\theta} \theta \in \rho a ~}$ үıа проүра́ $\mu \mu а т а$ $\epsilon ф а \rho \mu о ү \dot{v}$ ．
Пєріббо்тєрєऽ
плпрофорієऽ：
FORCE COMPUTERS INC． 729 University Ave．
Los Gatos，CA 95030
Phone（408）354－3410

> inter compurer center

 xpウ்on．

 пєрıßа்入入оv，о́пои Өа ßрєітєта（MICRO－HOME）пои Өغ்خعтє каı Өа μ порєітє va парако入оиӨท்øєтє $\triangle \Omega P E A N$

－Enions סıopyavஸ்vou ε тахu̇puӨرa $\Sigma \varepsilon \mu ı$ vápıa

（PASCAL，COBOL，FORTRAN，BASIC，WORD PROCESSING，XEIPI $\Sigma M O \Sigma \mathrm{H} / \mathrm{Y}$ ，d－BASE II，kaı III， MULTIPLAN，LOTUS，к．л．п．）
 otnv ayopá $\mu \eta x a v \eta \mu a ̇ t \omega v$ кaı SOFTWARE．
－Гıа перıбоо்т $\varepsilon \varepsilon \varsigma ~ п \lambda п р о \varphi о р і \varepsilon \varsigma ~ т п \lambda \varepsilon \varphi \omega v \eta ் \sigma є ~ \mu а \varsigma . ~$

word processing？ T由pa η

 пароибıaそદı

 EEMINAPIA WORKWRITER

 $\mu ı \lambda a \varepsilon ı$ Өuцataı үрафعı єкпаıठृยยє। EMAHNIKA

To WORKWRITER عıvaı $\varepsilon v a$ E $\lambda \lambda \eta v ı к о ~ п \rho о ү р а \mu \mu а ~ \varepsilon п \varepsilon \xi \varepsilon \rho ү a \sigma ı a я ~ к \varepsilon ı \mu \varepsilon v \omega v ~ \mu \varepsilon ~ \delta u v a-~$

－Прюто́типоц каı ठuvaто́я єпє६єрүабти́я кєıן

－．．．．kaı ó λa autá $\mu \varepsilon$
 TクS ABC．
TPEXEI ΣE IBM PC KAI COMPATIBLES

pia tis oupxpoves emixelpnoeis

乏тך Microtec $\mu п о р \varepsilon і т \varepsilon ~ п a ́ v т а ~ v a ~ \beta р \varepsilon і т є ~ o ́ \lambda a ~ o ́ \sigma a ~$ unápXOUV үıa Tov QL，aкȯนa кaı autá поu Өa غ̇pӨouv！

＊OI חAPAПAN』 TIME IEXYOYN O＿O AIAPKEI TO ETOK．

「＾इEחTEMBPIOY 50 T．K． 10433 TH＾：8836611，TLX： 210863

TA АПОTEАE OIKONOMIKO ETO乏 1985

Abstract

H Apple Computers, avaкоiv $\omega \sigma \varepsilon$ бтıৎ̧ 17 Октడßpiov та алотє $\lambda \dot{\varepsilon}$ - $\tau \varepsilon \rho a, \eta$ Apple Computer $\pi \varepsilon \dot{\varepsilon} \tau \chi \varepsilon \pi \omega \lambda \dot{\eta} \sigma \varepsilon ı \varsigma ~ \dot{v} \psi о v \varsigma ̧ ~ 1.918 ~ \delta І \sigma \varepsilon к а \tau о \mu-~$

H ITAAIA \triangle IAAE VIDEOTEX GEC/PRESTEL

 $\dot{\varepsilon} \chi \varepsilon ı ~ v ı о \theta \varepsilon \tau \eta \theta \varepsilon і ~ к а ı ~ а л \dot{o} ~ \tau \eta ~ М . ~ B р \varepsilon \tau а v i a, ~ \tau \eta \nu ~ O \lambda \lambda а \nu \delta i a ~ к а ı ~ \tau \eta \nu ~ A v-~$

 $\sigma \tau \dot{\varepsilon} \varsigma ~ \tau \eta \zeta ~ G E C ~ \gamma ı a ~ \delta \eta \mu ı o v \rho \gamma i a ~ \beta \dot{a} \sigma \varepsilon \omega v ~ \delta \varepsilon \delta о \mu \varepsilon ் v \omega v ~ к а ı ~ \delta ı \varepsilon \kappa \pi \varepsilon \rho а i \omega \sigma \eta ~$

 $\pi \dot{\lambda} \lambda \varepsilon ı \varsigma ~ \tau \eta \varsigma ~ I \tau а \lambda i a c$.

«ГTPATIתTIKA» CHIPS АПО THN АГГАIA

бколов்.
To $\pi \rho \dot{\omega} \tau o, ~ \varepsilon i v a l ~ \dot{v} v a ~ c h i p ~ \gamma ı a ~ \pi а \rho \dot{\alpha} \lambda \lambda \eta \lambda \eta ~ \varepsilon \pi \varepsilon \xi ॄ \varepsilon \rho \gamma a \sigma i a, ~$

 $\mu а \chi \eta \tau ו \kappa о \dot{v}$ аєротлa่vov.

H IBM EПIBEBAI Ω NEI TH \triangle YNAMH TH

 врүабіаৎ ає ало்бтабך 10 хıдıоцєтрюv.

Ol avtaү $\omega v \imath \sigma \tau \dot{\varepsilon} \varsigma ~ \tau \eta \varsigma ~ I B M ~ \sigma \tau o ~ \chi \omega ் \rho o ~ \tau \omega v ~ \delta ı к \tau \dot{v} \omega v, \dot{\varepsilon} \mu \varepsilon ı$

 General, Hewlett-Packard, Sperry, Wang кaı Xerox) avaкoivшe
 ঠіктvó тท५.

80386: О МЕГААОГ АДЕЛФОГ ТОY 286

 ßaбıбтєi η véa रहvid́ $\tau \omega v$ IBM PCs.

 130.000) каı $\mu \pi о \rho \varepsilon i ~ v a ~ \varepsilon к \tau \varepsilon \lambda \dot{\varepsilon} \sigma \varepsilon ı ~ \mu \dot{\varepsilon} \chi \rho!~ 4 ~ \varepsilon к а \tau о \mu \mu \dot{v} \rho ı a ~ \varepsilon \nu \tau о \lambda \dot{\varepsilon} \varsigma$,

 processing кaı multitasking каı $\mu \pi о \rho \varepsilon i ~ v a ~ \chi \varepsilon ı \rho ı \sigma \tau \varepsilon i ~ \tau \varepsilon \rho a ் \sigma \tau ı a ~$ $\dot{\varepsilon} \kappa \tau \alpha \sigma \eta ~ \mu \nu \dot{\eta} \mu \eta$.
 тov 1986, $\mu \varepsilon \tau \iota \mu \dot{\eta} 299 £$ avá $\mu o v \dot{\alpha} \delta a$. H Intel $\delta \dot{\eta} \lambda \omega \sigma \varepsilon \dot{o} \tau \iota \sigma \nu \zeta \eta \tau \dot{\alpha} \mu \varepsilon$ software houses, $\mu \varepsilon$ $\theta \dot{\varepsilon} \mu a$ $\tau \eta v$ aváл $\tau v \xi ̆ \eta ~ \varepsilon \varphi a \rho \mu o \gamma \dot{\omega} v ~ \gamma ı a ~ \tau о ~$ єлє६そ६рүабтทं.

Aло́ $\tau \iota \varsigma ~ a \rho \chi \dot{\varepsilon} \varsigma ~ \tau о v ~ \varepsilon \pi \dot{o} \mu \varepsilon v o v ~ \chi \rho \dot{\rho} v o v ~ \theta a ~ a \rho \chi i \sigma o v v ~ v a ~ \varepsilon \mu \varphi a v i \zeta ̧ o v ~$
 tov 80386, ó $\pi \omega \varsigma$ тo iSBC 386/20 Multibus I board, тo iSBC386/.

АПАГОРЕУГН ЕІГАГЛГНГ ҮПОАОГIГT Ω N ETH BPAZIAIA

 «баү $\omega \gamma \dot{\eta}$ $\tau \omega v$ mainframes $\varepsilon \pi ı \tau \rho \dot{\varepsilon} \pi \varepsilon \tau a l ~ a \lambda \lambda \dot{\alpha} \mu \dot{\partial} v o$ av avtウ் $\varepsilon \gamma \kappa p ı \theta \varepsilon i$

－Evac $\mu \varepsilon \gamma \dot{a} \lambda o \varsigma ~ a \rho ı \theta \mu \dot{o} \varsigma ~ \pi о \lambda v \varepsilon \theta v ı \kappa \dot{\omega} v ~ \varepsilon \tau а ı \rho ı \dot{\omega} v ~ \dot{~} \pi \omega \varsigma ~ \eta ~ H e w l e t t ~$ Packard，η Digital Equipment，η Texas Instruments кaı η Racal，

 каı о $\pi \rho \dot{\varepsilon} \varepsilon \delta \rho о \varsigma$ Ronald Reagan $\varepsilon v \delta ı a \varphi \dot{\varepsilon} \rho \theta \eta \kappa \varepsilon \pi \rho о \sigma \omega \pi \iota \kappa \dot{\alpha}$ үıа то $\theta \dot{\varepsilon} \mu a$ ．

 103 єкатониірıа бодда̇рıа．

H DEC $\triangle E N$ KATAФEPE NA ПPOธTATEYエEI TO COPYRIGHT

 «таиріа C－Itoh va $\delta \iota a \theta \dot{\varepsilon} \tau \varepsilon \iota ~ \sigma \tau \eta v ~ a \gamma o \rho \dot{a} ~ \tau а ~ \tau \varepsilon \rho \mu а \tau ı к \dot{\alpha} 220$ plus $\pi o v$ тара́үєı．

 aváүкабє tıç $\dot{\varepsilon} \xi ı$ втaıpiȩ C－Itoh，Cifer，Lear，Siegler，Televideo， Zentec кaı DDT ає ціа про́бкаıрך боvєрүабіа，$\pi \rho о к \varepsilon \iota ц \dot{\varepsilon} v o v ~ v a ~$

 $t \eta c$

APRICOT KAI HP ПPOKAムOYN THN IBM

H Apricot каı η Hewlett Packard $\sigma \tau \circ \chi \varepsilon \dot{v} o v v ~ \sigma \tau \eta \nu ~ \alpha \gamma о \rho \dot{\alpha} \tau \omega v$ IBM XT к $\alpha \downarrow$ AT，$\mu \varepsilon \tau \alpha \delta \dot{v} о$ v $\dot{\varepsilon} \alpha \mu о v \tau \dot{\varepsilon} \lambda \alpha$ тov५．

 Eлiбクऽ η Apricot $\delta t \alpha \theta \dot{\varepsilon} \tau \varepsilon \iota ~ \tau о ~ \sigma v \mu \beta \alpha \tau \dot{o} \mu \varepsilon$ тоv IBM XT Apricot Xen，о олоios $\mu \varepsilon \dot{\varepsilon} v \alpha$ бклпро́ бібко Winchester $\tau \omega \nu 10$ Mbytes

A $\bar{o} \dot{\sigma} \pi \varepsilon v \rho \dot{\alpha} \varsigma ~ \pi \omega \lambda \dot{\eta} \sigma \varepsilon \omega v, \eta$ Apricot $\varepsilon \kappa \tau i \mu \eta \sigma \varepsilon \dot{o} \tau \iota \kappa \dot{\alpha} \theta \varepsilon \mu \dot{\eta} v \alpha \sigma \tau \eta$ M．Bpet $\alpha v i \alpha \pi \omega \lambda o v i v \tau \alpha \iota ~ 9.000$ IBM PCs к $\alpha \iota 1200$ IBM ATs．Hidı α

vлодоүıбтळ்v $\tau \eta \varsigma ~ \sigma \tau \eta ~ M . ~ B \rho \varepsilon \tau \alpha v i \alpha ~ \theta \alpha ~ \varphi \tau \dot{\alpha} \sigma o v v ~ \sigma \tau \alpha 4.000$ кон $\mu \dot{\alpha}-$ $\tau \iota \alpha$

H FUJITSU ANTEПITI＠ETAI

 катабкєvaбт $\dot{\omega} v$ бто $\chi \dot{\omega} \rho о$ $\tau \omega v$ mainframes．

O Takuma Yamamoto，пן $\dot{\delta} \delta \delta \rho o \varsigma ~ \tau \eta \varsigma ~ F u j i t s u, ~ \varepsilon i \pi \varepsilon ~ \dot{o} \tau ı ~ غ ́ v a \varsigma ~ v \dot{\varepsilon} o \varsigma ~$

 avтós $\theta a \quad \mu \pi о \rho \varepsilon i ~ v a ~ \varepsilon к \tau \varepsilon \lambda \varepsilon i ~ 1.4 . \delta ı \sigma \varepsilon к а \tau о \mu \mu \dot{\rho} ı a ~ \pi \rho a ́ ̧ ̆ \varepsilon ı \varsigma ~ к ı v \eta \tau \dot{\eta} \varsigma ~$

＇A $\lambda \lambda$ oı av $\tau a \gamma \omega v ı \sigma \dot{\varepsilon} \varsigma ~ \sigma \tau \eta v$ a aopá $\tau \omega v$ mainframes ε ivaı η NEC $\mu \varepsilon \tau \eta$ бєıрд Acos 1500 каı η Hitachi $\mu \varepsilon$ т $\eta \nu$ ava $\gamma \gamma \varepsilon \lambda i a$ тov M－682 H ．

ェYェTHMA VIDEOTEX ГIA OUIKE METAФOPE

＇Eva $\delta \iota \varepsilon \theta v \varepsilon ̇ \varsigma ~ \delta i к \tau v o ~ V i d e o t e x ~ \lambda \varepsilon ı \tau о \nu \rho \gamma \varepsilon i ~ \sigma \eta ं \mu \varepsilon \rho \alpha ~ \sigma \tau \eta \nu ~ O \lambda \lambda \alpha \nu-$
 $\pi \rho \omega \tau о \beta о v \lambda i \alpha ~ \tau \eta \varsigma$ Transpotel International，η олоi人 $\varepsilon i \chi \varepsilon \varepsilon \eta \nu \tau \varepsilon$－
 $\kappa \alpha \iota ~ \tau \eta \zeta$ Cap Gemini Sogeti．H Transpotel，$\dot{\varepsilon} \chi \varepsilon \iota ~ \sigma v v \delta \dot{\varepsilon} \sigma \varepsilon \iota ~ \tau \iota \varsigma ~ \dot{\eta} \delta \eta$
 （Videotex）каı бтך Гєр μ аvia（Bild－Schirmetext）бто סiктvo IBM поv
 $\chi \dot{\omega} \rho \varepsilon \varsigma ~ \mu \pi о \rho \varepsilon i$ va $\dot{\chi} \varepsilon \iota ~ \varepsilon \dot{v} \kappa о \lambda \eta$ каı $\varphi \theta \eta v \dot{\eta} \pi \rho о \sigma \pi \dot{\lambda} \lambda a \sigma \eta$ бто ঠіктvo．
 $\kappa \varepsilon ́ \varsigma ~ \mu \varepsilon \tau \alpha \varphi о \rho \varepsilon ́ \varsigma, ~ \varepsilon v ळ ் ~ \sigma \dot{v \tau о \mu \alpha ~ \pi \rho о ́ к \varepsilon ı \tau \alpha \iota ~ v \alpha ~ \varepsilon \pi \varepsilon \kappa \kappa \tau \alpha \theta \varepsilon i ~} \dot{\omega} \sigma \tau \varepsilon v \alpha \kappa \alpha-$
 $\rho \dot{\varepsilon} \varsigma$.
$\Gamma \imath \alpha \pi \varepsilon \rho \imath \sigma \sigma o ̇ \tau \varepsilon \rho \varepsilon \varsigma \pi \lambda \eta \rho \circ \varphi о \rho i \varepsilon \varsigma \sigma \chi \varepsilon \tau \iota \kappa \dot{\alpha} \mu \varepsilon$ то $\sigma \dot{v} \sigma \tau \eta \mu \alpha$ Tran－ spotel $\varepsilon \pi \iota \kappa o \imath v \omega v \varepsilon i \sigma \tau \varepsilon \mu \varepsilon \tau \eta v$

Transpotel International
 Koopmansstraat 9

N．L． 2288 BC Rijswijk－Nederland
Tel．070－903730

ПРОГРАММА ГIA $\operatorname{\Sigma XE}$ IIAГH EXPERT SYSTEMS AПO THN H－P

 өa $\mu \varepsilon \lambda \varepsilon \tau \eta \dot{\sigma \varepsilon ı ~ \delta i a ́ \varphi o \rho a ~ e x p e r t ~ s y s t e m s ~ \gamma ı a ~ v a ~ \pi \rho o \sigma \pi a \theta \dot{\eta} \sigma \varepsilon ı ~ v a ~}$

Ol $\sigma \chi \varepsilon \delta ı a \sigma \tau \dot{\varepsilon} \varsigma ~ \tau o v$ software，$\varepsilon \rho \gamma \dot{\zeta} \zeta$ ov $\tau a l ~ \mu \varepsilon ~ \tau \varepsilon \chi v i \kappa \dot{\varepsilon} \varsigma ~ \pi o v ~ \dot{\varepsilon} \chi o u v \dot{\eta} \delta \eta$
 λa үıa va $\varepsilon \pi ı \lambda \dot{v} \sigma o v v$ $\tau \dot{\varepsilon} \chi o v \tau a ~ \pi \rho o \beta \lambda \dot{\eta} \mu a \tau a$ ．

O Martin Merry $\delta \iota \varepsilon v \theta \nu v \tau \eta ं \varsigma ~ \tau \eta \varsigma ~ о \mu a ̈ \delta a \varsigma, ~ \varepsilon i \pi \varepsilon ~ \dot{~} \tau ı ~ \eta ~ \gamma \nu \dot{\sigma} \sigma \eta ~ \pi o v ~$
 $\dot{\alpha} \lambda \lambda o v$ عiठovs $\gamma v \dot{\omega} \sigma \eta$ ：

 ßа் $\varepsilon \iota \varsigma ~ \gamma \nu \dot{\omega} \sigma \varepsilon \omega v ; »$

SUPER-HICHRELIABILTH

- 20,000,000 passes
- Super Hub Ring
- 3\% modulation
- $60^{\circ} \mathrm{C}$ heat - resistant jacket
- 100\% certified

MPOMHOEYE E[त्ट

 $\triangle H M H T P A K O \Pi O Y \wedge O Y ~ 64,11741$ AOHNA, TH^. 9238109, 9239987, TE^EE: 219807 REF 265

OUvĖVIEUక̧』

EYZHTHEH ME TON к．NIKO TZIOYMAKH， KATAEKEYAETH TOY EAヘHNIKOY IBM－ COMPATIBLE YПONOГIETH «ПYӨIA»． EANHNIKOI IBM COMPATIBLES：ГIATI OXI；

 тexvodoyiag каı каıvоторıটiv tov EOMMEX，о́лои

TOY TAKH TEIPIMתKOY

EP．：Küpıє Ţıouнákn，ac apxioou

АП．：Katáyouaı aпó in＾ápıoa，a $\lambda_{\lambda} \dot{\alpha}$ үعvvíӨnка отпи Аиعрікп்，ото Detroit．

 $\mu ı$ Virginia kaı G．Washington Mnxavo－

 हта⿱㇒日：ia American Systems Corporation，

 tnc Wang，tnc Burroughs kal $\dot{\alpha} \lambda \lambda \omega \nu$
 oт $\dot{\theta} \theta \mu \mathrm{ou}$ ．

Прıи алȯ $\mu \varepsilon \rho ı к \dot{\alpha}$ x $\rho \dot{v} v i a, ~ a v \dot{\lambda} \lambda \alpha \beta \alpha$
 vav́otaӨرo tou Pearl Harbor．Мiyo $\mu \varepsilon \tau \dot{\alpha}$
 отŋи етаıріа，пои афоройбє тпи ката－

 поріа．Mia μ крŋ் оца்ба $\mu \eta \chi а v ı к \dot{\omega} v$ $\dot{\varepsilon} \rho \varepsilon u v a c$ отпи опоіа ои $\mu \mu \varepsilon$ тіха кı күш்，

 PCs каı，о́таи твлвішоє，віхацє аркєто்

 пиа ка்тı ठıко் μ ас．
 －E入入nuec；

 ßопӨо் каӨпүптท் ото George Mason，

 отпи A $\mu \varepsilon \rho ı к \grave{.}$ ．
 катабкеиабтікєя ठрабтпріо்тптєৎ oтŋレ E $\lambda \lambda$ á $\delta a ;$
АП．：То та६іठı поט к $\dot{\alpha} v a \mu \varepsilon \varepsilon \cup \eta \mu \varepsilon \rho \omega т ı \dot{\alpha}$
 عuvoïка reports үıa тпи Eupwraïкท่

 Е $\lambda \lambda \dot{\alpha} \delta \alpha$－$\sigma т \eta \nu$ опоіа ката $\lambda \dot{\eta} \xi a \mu \varepsilon, \mu ı а \varsigma$,

 прооптткєс»；＇Ібшс о்ті $\theta \alpha \mu$ лорои்－

 $\dot{\alpha} \lambda \lambda \eta$ ，үıаті ка்тı тغ்тоוо $\delta \varepsilon \nu$ віцабтє．

 нóvo η ефариоүй тпс каı о́хı η ката－
 то $\dot{\varepsilon} \alpha$ проопаӨой $\mu \varepsilon$ va ка $\lambda \dot{u} \psi о \cup \mu \varepsilon$ ．
EP．：Ac ६avaүupioou ε ӧ $\mu \omega с$ ото ६єкі－ v $n \mu a ́$ oac．

 $\varepsilon \lambda \varepsilon \dot{u} \theta \varepsilon \rho о$ хоо́vo μ ас．Еixa $\mu \varepsilon$ то $\alpha \beta a v t \dot{\tau} \zeta$

 $\mu \varepsilon$ ह̀va $\Pi \lambda \dot{\alpha} v o . ~ \sum \tau \eta$ ouvéxeia，$\mu \varepsilon \quad \tau \eta$
 ипа்рхоии отıц Н．П．А．，алоктท்бацє про்－
 аүора́，$\dot{\eta} \rho \theta a \mu \varepsilon$ ов єпафท் $\mu \varepsilon$ поо $\mu \eta \varepsilon \cup т \dot{\varepsilon} \varsigma$ кaı $\alpha \rho x i \sigma a \mu \varepsilon \mu \dot{\varepsilon} \rho a \quad \mu \varepsilon$ тП $\mu \dot{\varepsilon} \rho a \quad v a$ ט入опоוой $\mu \varepsilon$ та $\sigma \chi \dot{\varepsilon} \delta ı \alpha \dot{\alpha} \mu \alpha \varsigma$.
 $\varepsilon \delta \dot{\omega}$ oтŋv E $\lambda \lambda \dot{\alpha} \delta a$ ，yia va $\dot{\varepsilon} X o u \mu \varepsilon$
 ипоß $\dot{\lambda} \lambda \mu \varepsilon \mu і а ~ \mu \varepsilon \lambda \dot{\varepsilon т п ~ о т о ~ Y п о и р у в і о ~}$
 ипахӨойнв отои 1261／82．

 ариптікท் arávtŋon：Autท் тך фора́，
 ware support．Профаvய்¢ ка̇лоıос，оиц－
 аитіпро́бшто，$\dot{\eta} \dot{\text { о́tו }}$ то hardware oav
 software support．
 $\mu \varepsilon \lambda \dot{\varepsilon} \tau \eta, \eta$ очцßато́тпта $\mu \varepsilon$ тои IBM PC $\varepsilon \xi \alpha \sigma \phi a \lambda i \zeta \varepsilon ı \dot{\alpha} \phi \theta$ ovo $\dot{\text { ह́тоıиo }}$ software．

 otov то́tє umoupyó Texvo入oyiac кúpıo

 vтıкп்．＇O

 оп் $\mu \varepsilon \rho$ а μ ои итоохغ் $Ө$ пкаи ало் тп Г． Граицатвіа＂Epeuvac каı Texvo入оүіая，

$\Delta \varepsilon v$ ท்tav xрпиатіко́s о бкото́я тия

EP．：Kaı о EOMMEX；
АП．：О ЕОMMEX $\mu a c \dot{\varepsilon} \mu \alpha \theta \varepsilon \mu \dot{\lambda} \lambda_{ı}$ ，пюו
 отп $\triangle E \Theta$ ．Мпорळ் va лш ótı घivaı o μ óvod

Аито́ пои $\theta \dot{\lambda} \lambda \omega$ va toviow givaı ótı，！

 η ПІко．
 Siaoņ；
АП．：Kavéva．＇Опшc oac sina，$\delta \varepsilon$

EP．：По̇бо ои $\mu \beta a \tau \dot{\eta} \mu \varepsilon$ тои PC $\theta \varepsilon \omega \rho \varepsilon i t a$ тп ПиӨia；
АП．：Eठ் $\theta \alpha \pi \omega$ кátı nou iowc va
 Наотє оицßатоі оє BIOS єпіпєठо．Mio вилєıріа пои віха про́офата，ठвіхивı то

 Kévtрo Epeuvüu Kpritns घ̀vas aró touc

 sivaı an $\lambda \dot{\omega} \varsigma$ MS－DOS，$a \lambda \lambda \dot{\alpha}$ BIOS
 отоu IBM PC．Ои́tя ta Bouдyápıka PCs пои киклофорои்ン каı то ипоирүвіо то

 каvoviká．

 Hia हtaıpia nou avayvmpiそहtaı otnu Аигрıкท் каı ठıєӨvш்¢，ало் óoouc аохо
 oav η корифаia tou вiठouc．

To aүopáそ，оu ε ，غ̇тоו μ о σ ROM chip （бтоххіکદı 75\＄то घ́va）．

 типшӨві като́ліи параүүв入iac $\mu a \varsigma$ о
 हाıфáveıaç kaı óxı multi－layer örwc tho IBM．Exouv аркєтє́¢ ठıафорє́，апо் то
 vovtaı aпó пı пробєүцд்иך катаоквиа

 slots yia ROMs nou סev èxeı η IBM．
 धкıท்oa

 ın่ kaı íıo control bus $\mu \varepsilon$ tov XT．
 ото бıко் оас РС，ипадрхєı пері－

ПП．：Na oaç пш：То ко்бтос tou board

 катоцдирішv бод入арішv，нóvo үіа тпи

 оо́тŋта．
P．：Екто́¢ апо் то board，та ипо்خоппа μ д́p проврхоитаі；
П．：Та коиßойк $\lambda ı$ ，катабквиáそоитаı

 そouv ка́тı парапд்vш．

 потя 入оүіко́ ко்ттос．
Tа трофоботіка́，μ порои்v va yivouv

 парáyoutaş tou кӧбtouc．Av zivaı ıкаио－

 tov＇Eג入nua катаякеvaotì．
 oӨóvnc μ торяi va ϕ व்oॄя to 15% то

 поט غ́pxovtaı hóva touc фородоүаüvtaı
 $85-90 \%$ ．Аито́ проотаӨой $\boldsymbol{\varepsilon}$ va то риӨиі－

ка́лшс пара́दॄvo غ̇va о入ок入n $\rho \omega \mu \dot{\varepsilon} v o$

 غंтоцшレ computers．

 $\mu \eta$ ；

 η аદ̆iવ тغ்фтєا ото $30-35 \%$ ．

 каı та плпктродӧүıа μ пороӥv va ката－ оквиवaтtoúv $\varepsilon \delta \dot{\omega}$ ．

 sivaı тıо үрйүopoc．Eivaı каты் 40\％ тахӥтєрос апо் тои IBM PC，$\mu \varepsilon$ тои μ икро－
 т ε रио λ оүік $\dot{\alpha}$ ．
 алараітпто еєоплıбио́；
 параүшүท் апо் тіс 15 lou入iov，o onиаvті－

 $\mu \eta \chi a v \dot{\eta} \mu a t a \alpha$ autá $\delta \varepsilon v$ घivaı по $\lambda \lambda \dot{a}$ ，घivaı

 тпи параүшүท் үйрш отıс 15 Октшßріои， оптшс иподоүіఢоиие．

 катако́рифпя параүшүท்я тои биотйда－
 systems house，пои парајує то ßабіко்

 computer，оло்к ппоо，апо் та boards $\mu \varepsilon ̇ \chi \rho ı ~ т а ~ d i s k ~-~ d r i v e s ~ a r o ́ ~ т \eta \nu ~ i \delta ı a ~ ع т а ı \rho i a, ~$

 бนov்，$a \lambda \lambda \dot{\alpha}$ kaı бuvtoviouoú．Г $1 a v a$

 тпט $\dot{\alpha} \lambda \lambda \eta$ ，үIa $\dot{\varepsilon} v a$ systems house ol

 параүшүท் 100 кониатіш் то $\mu \eta \dot{v a}$ ．Апо் квı каı т $\dot{\rho} \rho a, \eta$ аúkпon тпऽ параүшүท்я

 үіvetal ma аvaүкаіоऽ о аитонатıдо்с．

 параүшүท்．
 aүopá кaı $\mu ı \lambda n \dot{\sigma} \sigma 0 \mu \varepsilon$ үıa тnv EOK $\dot{\eta}$ тוс Араßıкєє хф்рєє，по்оо $\theta \alpha$ а入入 $\dot{\alpha} \xi \varepsilon ı \eta$ ката́бтабŋ；

 Xouv kaı пробıaүрафє́，каı àvӨршноı va
 Koıvótทtec．Metá عivaı ol Араßıкغ்ৎ

 бuvėסpıo oтпи Tüvıסa，oтпи Tuиŋбia．

 бтаӨоن̈ $\mu \varepsilon$ вб்்，отпи патріठа $\mu \alpha \varsigma$ ，каı va
 хш̈ря，．

Тغ̇лоৎ，ипа்рхєı каı η Eирштаїкท่ аүора́，η опоіа талаитеن̇ยтаı ако́ца

 $\theta \dot{\varepsilon} \mu \alpha \tau \alpha$ marketing aut $\dot{\alpha}$ пои $\theta \alpha$ ка θ орі－

 marketing oтпи E $\lambda \lambda \eta \cup ו \kappa \eta ் ~ a ү o \rho a \dot{~} ;$
АП．：Av оиүкріиои $\mu \varepsilon$ тіৎ $\tau \mu \varepsilon \varsigma, \mu \alpha \varsigma ~ \mu \varepsilon$

 үıaті $\delta \varepsilon$ Өа $Ө \dot{\varepsilon} \lambda a \mu \varepsilon$ va т $\dot{\varepsilon} \sigma о \cup \mu \varepsilon \tau \dot{\omega} \rho a \dot{\varepsilon} \xi \omega$

 hardware service stations，auti үıd dea－

 vта $\mu \alpha \varsigma$ ，каı θ а ипоотпрі६оицє то ка́ $\theta \varepsilon$ $\mu \eta x a \dot{v} \eta \mu \alpha \dot{\alpha} \mu a \varsigma$ xшрıoта́．
 тпレ $\dot{\varepsilon} \delta \rho a$ oac；

 параүшүıкท் періохй шыбт va μ торяі va

 по вирвіас，к $\lambda і \mu$ ккас аүора́．

Eutúxnua $\theta a \dot{\text { ñtau va ouvepyaotoú } \mu \varepsilon}$

 avtinןоowria $\dot{\eta} \dot{\varepsilon v a}$ dealer．$\Delta \varepsilon v \mu$ норвіс，

 нia mapayүع入ia عvós xpóvou yia 100

 $\dot{\alpha} \lambda \lambda \mathrm{oc}$ ．
EP．：ЕХєтє $\mu \pi \varepsilon$ बтпи aүopá，autウ่ тท бтіүиウं；
АП．：EXои ε ，$\mu \pi \varepsilon ı \mu \varepsilon$ то $\dot{\varepsilon} v a$ по்бı．Проৎ то парои паірvоинв параүүعлієя $\mu \varepsilon$

 ßpiou，$\mu \varepsilon \delta_{1} \dot{a} \theta \varepsilon \sigma \eta$ otทu аүора́ пєріпои 100 кониатіші то $\mu \dot{v}$ иа．

 проїòv каı отрغ̇фоии тŋи пла̇тп．Avti－

 $\dot{\alpha} \mu \varepsilon \sigma о$ каı то апшंтعро $\mu \dot{\varepsilon} \lambda \lambda$ о०；
АП．：Av ó̀ α п $\dot{\alpha} \vee \varepsilon \kappa \alpha \lambda \dot{\alpha}$ ，то்т $\mu \pi о \rho \dot{\omega} v \alpha$ бає пш о்т $\theta \alpha$ прштотипท்боицв．$\Theta \alpha$
$\theta \dot{\varepsilon} \lambda \alpha \mu \varepsilon$ va غпєктаӨоن̈ $\mu \varepsilon$ каı $\sigma \varepsilon \dot{\alpha} \lambda \lambda$ д

$\Sigma_{\text {ta }}$ үpaфвia $\mu a \varsigma$ ，та PCs үivout $\pi \alpha \lambda \mu о ү \rho \dot{\alpha} \phi$ оı $\dot{\eta}$ logic analysers $\mu \varepsilon T$ аитіотоıхеৎ ка்ртес．То PC віvaı mı о́pүavo үıа та па̇vта．$\sum a v \pi \alpha \lambda \mu$ оүрд́фо aç поü $\mu \varepsilon$ ，ठiveı otnv oӨóvn $\mu \dot{\varepsilon} \chi$ рı 60 MH

АП．：H ПuӨia，то PC $\delta \eta \lambda \alpha \delta \dot{\eta}$ ， кuцaivetaı үúpw otıc 250．000，हvய்
 סібко тшv 10 MB，otic 430．000．Eтпи тוи перıえацßävoutaı каı та manuals по

 фраö to MS－DOS．
 $\dot{\alpha} \lambda \lambda$ ；
АП．：Móvo वutó：To $\mu \eta x \dot{\sim} \cup \eta \mu \dot{\alpha} \mu \alpha$ ，iow

 протврท் $\mu \boldsymbol{\alpha} \alpha$.

> H ठıعن்Өuvon tп̧ G.I.S. عivaı:

Kapa日ávou 37 －ミкоифá ヘápıó 41222
Tท入．：041－223897
TELEX 0295231 GIS
каı отпи A $\mu \varepsilon \rho ı к \eta \dot{:}$

GIS USA，SALES OFFICE 6269 LEESBURG PIKE SUITE 303 －FALLS CHURCH VA－ 22044

TEL：001－7035342020．

Oı био $\mu \varepsilon ү а \lambda и т \varepsilon \rho е \varsigma ~$

EIIXEIPHEESN

Геvikn் Лoүוoтікท்

Tмодӧүnon
MıӨӨoठooia

APPLICATION

Supercalc 3
Multiplan - D Base II PFS File - Report
DB Master
MAC Lion
MAC chart
DELTA Friday
Filevision
Lotus
Speller
Mac Publisher

ГРАФІКА

Архітєктоиікй \sum хббіаю Мпхалодоүіко́ \sum хє́бıо Гعиvท்трıєя Г $\rho a ф ı к \dot{\omega}$ ФатоoúvӨron - 200 M
 үрацид்тши

ПOAITIKOI MHXANIKOI

 DEVELOPM ICON Basic UCSD PAS COBOL LEY FORTRAN CONCURF MS-DOS
FINDER
FONT C
ПPO•Y•ПONOM
FULL PROFESSIONAL SYN ЕКПАІОЕҮTIKА ПРОГРАММАТА

TH^.: 4517786-4520222 TENEE 21/2932-21/3374

A PITY．．．

 umo＾oyıaтய̈v．．．

＾EYKANTIKA YПAPXOYN ПO＾＾A．．．

BISOGNA SAPER PERDERE．．．．

 отроицфоларе́a тои．＇lows vıati єкто́s aпо̇ ıиıтабіо́v

 каке̇ц．

QUIZ

 єпıбтпиоvıкウ் є́pєuva；Өa μ оu пєitє ótı unápxouv xய்pes

 Tクv anàvinon $\beta p \in i t \in ~ i \eta ~ \mu o ̇ v o ı ~ \sigma a s . ~ \Delta \in v ~ \epsilon i v a ı ~ \delta u ̈ \sigma к o \lambda o, ~$

O NOMOE TתN IIOANOTHTRN

X $\theta \in \varsigma$ єiठa бтоv ùmvo μ оu є̇va à $\sigma \chi \eta \mu$ o òveıpo．$\Sigma \epsilon$ кảmoıa
 $\mu o ̇ v o ~ t a ~ s o f t w a r e ~ h o u s e s ~ n o u ~ o u v \in p y a ́ \zeta o v t a ı ~ \mu \epsilon ~$

©AYMATOYPIO MHXANHMA

 проура́ $\mu \mu а т а, ~ \delta ı а р к є і а ц ~ 10 ~ \lambda \in п т \dot{\omega v . ~}$

3）Oı парауónєvєऽ ко̇пıєऽ，єivaı пảvы aпó 9 форе̇ऽ отıs 10 o＾óб $\omega \sigma$ тєऽ．
 ауо́pađє то computer shop aпо் үvшбто் аvтіпро̇бшпо．．

ANAKOINOLH!!!

 quality xprion 2. Printers NEC yia near letter quality xprion. 3. Printers COMMODORE MPS-802 yia draft xprion.

 $\mu о \rho \varphi \eta_{\text {то }}$ то.

 $\dot{\alpha} \lambda \lambda \omega v$ к $\varepsilon \mu \mu \dot{v} \omega \omega \mathrm{v}$.

KENTPIKH $\operatorname{\Delta IAOEEH}$
SUSTETIATIGS ERE
^AГOYMITZH 16 \& \triangle E^IIIANNH 2, KA^ヘIӨEA. TH^.: 9234-936

EГKYPOTHTA ETHN ПАНРОФОРІКН

A＇BPABEO
 $\triangle I A \Gamma \Omega N I \Sigma M O Y$ ГГ．EPEYNA乏 \＆TEXNOへOГIA Г ГIA TO KAAYTEPO EMAHNIKO ПЕРІОДІКО ПАНРОФОРІКНГ： crapluter

EKAOEEI乏 COMPUPRESS

AӨHNA：

ᄃOARMOY \＆MПOTAEH 9 ，
10682 AӨHNA，THA： 3644685

ПEPIOAIKE乏 EKAOEEI乏
－COMPUTER TIA ONOYE
－INFORMATION
－PIXEL
－HARDWARE \＆POMПOTIKH
－COMPU－DATA

ENA ГIГАNTIO ПРОГРАММА TOY M.I.T. ПРОДIAГРАФЕI TON AYPIANO PONO TOY COMPUTER ETHN EKПAIDEYEH

ПРОГРАММА AOHNA:

ENA ПOへY ЕЛПIДОФОРО OPAMA YлOПOIEITAI...

TOY $\boldsymbol{\Phi} \Omega \mathbf{\Omega H}$ KAPATZIA

 тои I6рїитоя.

O $\lambda \alpha$ ápxıбаи о́таи η IBM квंрбıбє μ ı

 Поגutexueio．H Digital Equipment，η
 हтаıpia computers twv Н．П．А．，поט

 $\mu \varepsilon \gamma \dot{\text { वे }}$ о оток $\mu \eta$ Хаипиа́т ωv ．

 Texvo入oүікó Ivotitoúto tņ Maбoaxou－

 Кغ̇vто П入профорıкйऽ，ото опоіо ала－

 перוббо்твра Проүра́ $\mu \mu$ ата тои Iठри̇ μ－
 ठоӨой по $\lambda \lambda$ оi computers，бє по $\lambda \lambda$ ойя

 тицєц 2.000 иполоүıбтє́ऽ апо் тпи Digital каı 1.000 ако́ $\mu \eta$ ало் тпи аитаүшviatрыд
 3.000 ипо入оүıбті்и，غ்фӨабє та 50 єка－
 pıа ठо $\lambda \lambda \dot{\alpha} \rho ı \alpha ~ \delta ı а т غ ் Ө \eta к а и ~ а п о ் ~ т о ~ M . I . T, ~$

 апараітптп ипобони்．＇Eтбı，үعиレท்Өпкє то Про́үраица АӨпиа́，тои отоіои $\dot{\varepsilon} \mu \beta \lambda \eta \mu \alpha$ вivaı η ү λ аи́ка．Гıа прш்тך фора́

 ипо入оүюбтвя．

H OPFAN』EH KAI OI ETOXOI

－О λ о о о с computers tou Проүра́ $\mu \mu \alpha т о$ ，
 tou Spine Network tou M．I．T．Arò ò λ ous，

 бє т $\rho \varepsilon ı \varsigma ү \lambda \dot{\omega} \sigma \sigma \varepsilon \varsigma \pi \rho о ү \rho \alpha \mu \mu \alpha т ı \sigma \circ$ о́（Lisp，

 квіццио о́пои тпи терıүра́фєı．Eảv віvaı

 （20，30，ض் aкóun kaı 40）yıa va тךv

 тغ̇тоıа пєוра́цата．

 μ крообкопикท் к $\lambda і \mu а к а ~ \mu ı \alpha ~ б и ү к є к р и ц \varepsilon$－
 quviotataı am $\lambda \dot{\alpha}$ oтn $\delta о к ı \mu \dot{~ п о ~} \lambda \lambda \dot{\omega} \nu$
 ипо入оүıбтєє，Та пра́үцата о́ $\mu \omega с$ бвv عivaı غ̇тьı．Пар＇ò $\lambda \eta$ тПи $\varepsilon \lambda \varepsilon \cup \theta \varepsilon \rho i \alpha$ nov

 $\mu \varepsilon \rho \varepsilon ் \sigma t \varepsilon \rho \alpha$ отך $\sigma \cup v \varepsilon ̇ \chi \varepsilon ı a . ~$

 тро́ло о́XI ıбıаітера апоботıко்．О итоло－
 $3+4$ ，» то паєбі апаитои்бе «7»，о иподо－

 тท்рŋбє о $\Delta \rho$ ．$\Delta \varepsilon \rho т о и ̆ \zeta о \varsigma, ~ « \varepsilon \delta \dot{\omega} ~ б \cup \mu ß а і-~$
 үıбтท்ৎ проүрациатіґвı то паıбі каı о̀хı то

 $v a \mu \dot{\theta} \theta$ ou $\mu \varepsilon$ кaı $v^{\prime} a \lambda \lambda \dot{\alpha} \xi$ ои $\mu \varepsilon$ tov кóб μ о проऽ то ка入и்тєро»．Аитท் η бтвіра

 $\mu \alpha к а ~ \mu \varepsilon$ та пвंитє окалопа่тіа пои avaфغ́рацє лріv．

OI ГРАФIKEะ ПAPAETAEEIE

Σ тпи прш்тп $\beta a \theta \mu i \delta \alpha$ твוраца்тшข тои

 $\mu \varepsilon \lambda \dot{\varepsilon} \xi \varepsilon ı \varsigma . \quad$ Etorı，Sivoutas ¡wutavá парабвіүиата ипоßоך $\theta \varepsilon і$ тп $\mu \varepsilon \lambda \varepsilon ̇ т \eta . ~$

 vevpoavatopiac．O ипо入оүוотйя סвіхveı $\mu \varepsilon$ عוкóveऽ $\pi \omega \varsigma ~ \mu \varepsilon \gamma a \lambda \dot{\omega} v \varepsilon ı \dot{\varepsilon} v a \dot{\varepsilon} \mu ß \rho v o, \dot{\eta}$

 ктролоүіая пшс ठıаиорф ω ооитаı то
 кераіа．
－О
 иполоүібтท்：
 ठıбабкö $\mu \varepsilon v o v$.
ß）кव்vยı то вúko入n тп $\mu \varepsilon \tau \alpha \beta i ß a o n ~$ үvய்oع ωv.
 бтік $\dot{\alpha}$ парабвіүиата，бє $\sigma \chi \dot{\varepsilon} \sigma \eta ~ \mu \varepsilon ~ т о ~$
 sivaı am入д．

H EEOMOIREH

 oŋ¢，μ тороúv va «סıоוкоúv» हтаıрієৎ，va tic «тоu入áve» $\dot{\eta}$ va «aүopá̧ouv» ád $\lambda \varepsilon \varsigma$ ，

 घvós kapaßıú kaı va $\delta \varepsilon ı$ пшৎ autá

 tnonc Reagan－Gorbatchov．
 वutnंऽ tทऽ $\beta a \theta \mu i \delta a c, ~ \varepsilon i v a ı ~ т о ~ « \Gamma \lambda \omega \sigma$

 фغ́рvєı ото Парібı，о́тои Өа пре்тєı vc

 $\dot{\omega} \nu \tau a \zeta »$ үa入入ıкад．
Σ тп $\delta \varepsilon ט ் т \varepsilon \rho \eta ~ \beta a \theta \mu і \delta а$ тои Проүрд́ $\mu \mu \alpha-$
 ı бıбабка入iac．$\Delta \varepsilon v$ عivaı mı ò $\lambda \alpha$
 ап் тои катабквиабтท் тои проүра́ $\mu \mu \alpha-$
 пр пооß $\dot{\eta} \mu \alpha т \dot{\alpha}$ тоט．

ПEPIBAMAONTA EXEDIAEMOY KAI EYNOEEHE

 прабвіүиата．इтои тоцва тпऽ Apxı－

 тпиа，поט єпוтрєппєı тך «ठпиıоирүіа» ктı－

 ко்бтоис．Фибוка́，то бט்бтпиа סiveı oтך

 ers．Avtoi пои үрд́фоuv，avti үıa áp ${ }^{\text {人 }} \rho \alpha$ ivouv проүрд́ $\mu \mu \alpha т \alpha$ та опоіа $\delta \eta \mu ı и \rho-$ oüv عıкóve؟ кaı паıxviбıa．Про́кعıтаı үıа
 арактпрıотıко́ то о́тו віvaı η иóv пои

 атıкаं $\pi \rho о \beta \lambda \dot{\eta} \mu \alpha \tau \alpha$ каı va avamтט்бouv

 пáosı η ү $\dot{\varepsilon} \phi \cup \rho a, ~ a \lambda \lambda \dot{\alpha}$ tou $\kappa a \lambda \varepsilon i v a$

EYETHMATA－ ПАІААГЛГОI

 av аvтıкві $\mu \varepsilon v o$ та $\sum v o t \eta \dot{\mu} \mu \tau \alpha$－Паıסа－
 Exprert Tutors）．Autá пароиøıáそouv

 ро́入о．$\Delta \dot{\varepsilon} \chi \varepsilon т а ı ~ \varepsilon \rho \omega т ท ் \sigma \varepsilon ı \varsigma ~ а п о ் ~ т о ~ \mu а Ө \eta т \dot{\eta}$ ，

 тпऽ \sum татікท்с．O computer парако入оиӨві

 поо́обо тои отоибабтท்，yıa та סuvaта́

 кабіа пробарио்そетаı отıৎ аváүкєৎ тои
 عivaı μ аそıкウ்．

AYTOMATH MA＠HTEYEH KATת AПO EIDIKOYE

То те்илто ока λ i，عivaı η «Аито́ $\mu \alpha т \eta ~$

 autó то бка入i घivaı по ठи́бко入о апо் ò $\lambda \alpha$

Ac δ ой $\mu \varepsilon$ ó $\mu \omega \varsigma$ үıа ті поо̇кеıтаı．A¢

 （п．x．o F．Porche）．Σ＇аטтท் тпи пєрілты－
 $\alpha v \theta$ рйпоия отои ко்био пои θ а віхаи то проио́нıо аито்．Av о́ $\mu \omega \varsigma$ иторои்бя о Porche va $\mu \varepsilon \tau \alpha ß ß \dot{\alpha} \sigma \varepsilon$ бтои computer тоия عиعрүойя тро́лоия $\mu \varepsilon$ тоиц опоіоия

 тоט avá $\mu \varepsilon \sigma \alpha$ ото ко̇бтоৎ，ото ßàpo̧，

 потغ்．

Та парабвіүиата поט аvафغ́раиє $\varepsilon \delta \dot{\omega}$ ，

 итв⿱㇒扌\zh20日寸voı тои Проүра́ $\mu \mu$ тос，віvaı va $\pi \dot{\alpha} \psi \varepsilon ı$ о computer va عivaı үıa та паıбıá

 ßıó touc．

То Про́үра $\mu \alpha$ A $Ө \eta \cup \dot{\alpha}, ~ \theta \dot{\varepsilon} т \varepsilon ı ~ п о \lambda \lambda \dot{\alpha}$

 tpia tou入áxıotou xpóvia yia va ßyouv

 xią тои Проүодд $\mu \mu$ тоя．
Н по $\mu \varepsilon \gamma \dot{\alpha} \lambda \eta$ бıavoŋтıкท் про́к $\lambda \eta \neq \eta$ tou «AӨŋvá»，zivaı η عúpeōn عvóc véou тро́пои бıбабкаліас．$\Sigma \dot{\eta} \mu \varepsilon \rho а$ ，хрпбъио－

 $\mu ı \lambda \dot{\varepsilon} \varepsilon ı ~ к a ı ~ ү \rho \dot{~} ф \varepsilon ı ~ \mu \pi \rho о \sigma т \alpha \dot{\alpha} \sigma^{\prime} \dot{\varepsilon} v \alpha$
 va $\mu \varepsilon \tau \alpha \dot{\omega} \dot{\omega} \sigma \varepsilon$ тך $ү v \dot{\omega} \sigma \eta$ ．To $\mu \varepsilon \gamma \dot{\alpha} \lambda о$ врш்тпиа поט Өغ்тєı то Пвіраца AӨŋvд்，
 тоо́тоя yıa va үіveı autó．
Квитріఢоитаৎ то вибıафв́рои каı ало－

 каı апоботıко்тяр $\mu \varepsilon \tau \alpha \dot{\sigma} \delta о \sigma \eta$ тŋऽ үvய்－
 акрıß்̈я то окопо்．Eàv та катафе்реı

H прผ́tn عtaıpعía Computers $\mu \varepsilon$ غ́ర́pa tnv Ө $\varepsilon \sigma \sigma a \lambda 0$ vikn avaveผંӨnкє．．． ．．．kaı $\mu \varepsilon$ véa ε тaıııkń tautótnta（Avஸ́vuuos Etaıpeía）

285.382 ／ 285.139 ／229．741．
yıa va ouvexíoधi va oas прооче́реı

kaı tnv uчn入ou عпıпと́రీou
 ото хढ́po tņ П入профоріки́s． Kı ón ω ৎ пávta，$\varepsilon \kappa$ кós an＇ta пıo náv ω otávtap，oas перıцદ́vouv kaı ó入oı ol пa入ioí oas yvaotoí：
SINCLAIR－ANADEX－MBO
NAKAJIMA ALL－MITSUKO－AMSTRAD－EPSON－TAXAN－COMMODORE－VECTOR $\mu \mathrm{a}$ í $\mu \varepsilon \mu \varepsilon$ рıкои́s vદ́ous
 үıa va tous $\gamma v \omega$ pía\＆te．

$<E \Sigma \Sigma \Delta: \Pi \Omega \Sigma$ ГЕФҮР Ω NETAI TO TEXNO＾ОГIKO XAMA＂

 $\sigma \eta \dot{\varepsilon} \chi \varepsilon \iota$ Ө $\dot{\varepsilon} \sigma \varepsilon \iota ~ \sigma \alpha v$ $\sigma \tau \dot{\partial} \chi 0$ v α

 $\tau о \mu \varepsilon i \varsigma ~ \tau \eta \varsigma ~ о 七 к о v о \mu i \alpha \varsigma ~ \tau \eta \varsigma, ~ \kappa \alpha \iota v \alpha$ $\kappa \alpha \dot{v \varepsilon ı} \tau \eta v \tau \varepsilon \chi v o \lambda o \gamma i \alpha$ тŋऽ

Tou Nick Anning

 $\alpha \chi v \varepsilon \dot{\varepsilon} \pi \lambda \eta \rho \circ \varphi о \rho i \varepsilon \varsigma \pi о \cup \dot{\varepsilon} \rho \chi \circ v \tau \dot{\alpha} v \sigma \pi \circ \rho \alpha-$
 To 1985 о̀ $\mu \omega \varsigma ~ \eta$ v $\dot{\varepsilon} \alpha \eta \gamma \varepsilon \sigma i \alpha$ тои Mı $\chi \alpha \eta \dot{\lambda}$ $\Gamma \kappa о \rho \mu \pi \alpha \tau \sigma \dot{\omega} \varphi \dot{\varepsilon} \sigma \pi \alpha \sigma \varepsilon \tau \eta v \pi \alpha \rho \dot{\alpha} \delta \circ \sigma \eta \tau \omega \nu$
 Sivov $\tau \alpha \varsigma$ бü $\gamma \chi \rho \circ \vee \varepsilon \varsigma \kappa \alpha \iota \alpha \xi \iota \dot{\iota} \pi \iota \sigma \tau \varepsilon \varsigma \pi \lambda \eta$－ рочорієऽ．＇Eтбı，$\gamma і \mathrm{v} \varepsilon \tau \alpha \iota \pi \iota \alpha$ викодо̇тєр η
 इоßเદтькท் $\pi \lambda \eta \rho о \varphi о \rho ⿺ к \eta \dot{,}$ ，$о \mu \pi о \tau ь к \eta \dot{\eta} \dot{\eta}$ computer science．K $\dot{\alpha} \tau \omega \alpha$ о̇ं $\tau 0 \nu$ Гкор－ $\mu \pi \alpha \tau \sigma \dot{\omega} \varphi, \beta \alpha \rho \dot{v} v o v \sigma \alpha \gamma v \dot{\omega} \mu \eta$ $\sigma \tau 0 \cup \varsigma ~ \pi \alpha \rho \alpha-$
 vouv $\sigma \chi \dot{\varepsilon} \delta \iota \alpha \delta \rho \dot{\sigma} \sigma \zeta \varsigma \dot{\eta} \pi \alpha i \rho v o u v \alpha \pi 0 \varphi \alpha \dot{-}$ $\sigma \varepsilon ı \zeta$ ．
 $\dot{\varepsilon} \chi \varepsilon \iota ~ \kappa \alpha v \varepsilon i \zeta ~ \xi \varepsilon \kappa \dot{\alpha} \theta \alpha \rho \eta \dot{\alpha} \pi о \psi \eta \quad \gamma \iota \alpha \quad \tau \eta$ $\Sigma о ß \iota \varepsilon \tau \iota \kappa \eta \dot{\eta} \tau \varepsilon \chi \vee о \lambda о \gamma i \alpha, \mu \iota \alpha \varsigma \kappa \alpha \iota \pi \alpha \rho \varepsilon \mu \pi о-$

 $\chi \alpha \dot{\sigma} \sigma \mu \alpha \alpha v \dot{\alpha} \mu \varepsilon \sigma \alpha \sigma \tau \eta v$ Avaтo入ضं $\kappa \alpha \iota \tau \eta$ $\Delta \dot{u} \sigma \eta$ ，то олоio $\eta \mathrm{E} \Sigma \Sigma \Delta \pi \rho \circ \sigma \pi \alpha \theta \varepsilon i \quad v \alpha$
 δ ıктüou hi－tech ка兀абколєias．

П $\alpha \tau \tau \omega \varsigma, \alpha \cup \tau \dot{\eta} \tau \eta ~ \chi \rho o v i \alpha \dot{\alpha}, \sigma \tau \imath \varsigma ~ \sigma u v \varepsilon-$
 Kєvтрıкท்ऽ Елıт $о \pi \eta \dot{\varsigma}, \pi \dot{\alpha} \rho \theta \eta \kappa \alpha \nu \alpha \pi о-$

 $\lambda \alpha \alpha \nu \tau \dot{\alpha}, \sigma \cup \mu \beta \alpha i v o u v$ к $\alpha \theta^{\prime}$ oठóv $\pi \rho$ оऽ то
 тov $\pi \rho о \sigma \varepsilon \chi \dot{\eta} \mathrm{M} \dot{\alpha} \rho \tau \iota \circ$ ．Avtó $\theta \alpha$ єлıкирஸ்－
 $\alpha v \alpha \mu \varepsilon ̇ v \varepsilon \tau \alpha ı ~ v \alpha$ $\pi \dot{\alpha} \rho \varepsilon \imath ~ \alpha \pi о \varphi \alpha \dot{\alpha} \sigma เ \varsigma ~ \pi о \cup ~ \theta \alpha$
 $\kappa \tau \rho о \vee เ \kappa \dot{v}$ ขлодоүเбтడ்v．

Avt $\dot{\varepsilon}$ ol $\alpha \lambda \lambda \alpha \gamma \dot{\varepsilon} \varsigma \quad \theta \alpha \dot{\varepsilon} \chi \circ u \nu \kappa \alpha \iota \dot{\alpha} \lambda \lambda \varepsilon \varsigma$

 I α vov $\dot{\rho}$ ıo，七ovi $\zeta \varepsilon \tau \alpha ı ~ \eta ~ \alpha v \alpha \dot{\alpha} \kappa \eta$ v $\alpha \alpha v \alpha \pi \tau v-$ χ оойv к $\alpha \lambda \dot{\tau} \tau \varepsilon \rho \alpha$ аито $\alpha \tau$ олоı $\eta \mu \varepsilon \dot{\varepsilon} \alpha$ бט－ $\sigma \tau \eta \dot{\mu} \alpha \tau \alpha \varepsilon \lambda \dot{\varepsilon} \gamma \chi$ оט $\pi \alpha \rho \alpha \gamma \omega \gamma \eta \dot{\varsigma} \sigma \tau \eta$ Bıо η－ $\chi \alpha v i \alpha, v \alpha \alpha v \xi \eta \eta$ вi $\eta \pi \alpha \rho \alpha \gamma \omega \gamma \dot{\eta} \kappa \alpha \iota \chi \rho \eta \dot{ } \quad \eta$ $\tau \omega v \beta \iota \quad \mu \eta \chi \alpha v \iota \kappa \dot{\omega} v \rho о \mu \pi$ о̇ $\kappa \alpha \iota$ v $\alpha \varepsilon \varphi \alpha \rho-$ $\mu \circ \sigma \theta$ oủv ol $\tau \varepsilon \lambda \varepsilon \cup \tau \alpha i \varepsilon \varsigma ~ \alpha \rho \chi \varepsilon$ ย CAD γ l α v α $\beta \varepsilon \lambda \tau \iota \omega \theta \varepsilon i$ о π о七отıко่ $\dot{\varepsilon} \lambda \varepsilon \gamma \chi$ оऽ каı то service，tȯбo $\sigma \tau \alpha \Sigma_{0} \beta \iota \varepsilon \tau \iota \kappa \dot{\alpha} \varepsilon \rho \gamma \circ \sigma \tau \dot{\alpha} \sigma \iota \alpha$ $\pi \alpha \rho \alpha \gamma \omega \gamma \dot{\eta} \varsigma$ computers，ó⿱o к $\alpha \iota \sigma \tau \alpha \dot{\eta} \delta \eta$ $\varepsilon \gamma \kappa \alpha \tau \varepsilon \sigma \tau \eta \mu \varepsilon \dot{v} \alpha$ $\sigma \cup \sigma \tau \eta j \mu \alpha \tau \alpha$ ．Eлion $\varsigma, \pi \rho o-$ $\beta \lambda \dot{\varepsilon} \pi \varepsilon \tau \alpha \mathrm{t}$ бто $\delta \dot{\alpha} \sigma \tau \eta \mu \alpha$ 1986－90 v $\varepsilon \varphi \alpha \rho \mu о \sigma \theta \varepsilon i \dot{\varepsilon} v \alpha \pi \rho \dot{\gamma} \gamma \rho \alpha \mu \mu \alpha \varepsilon \kappa \pi \alpha i \delta \varepsilon u \sigma \eta \zeta$ $\sigma \tau \circ \cup \varsigma ~ \cup \pi \circ \lambda \circ \gamma 1 \sigma \tau \dot{\varepsilon} \varsigma \sigma \varepsilon \chi เ \lambda t \alpha \dot{\alpha} \delta \varsigma \sigma \chi \circ \lambda \varepsilon i \alpha$ $\tau \eta \varsigma \mu \varepsilon ̇ \sigma \eta \varsigma \beta \alpha \theta \mu i \delta \alpha \varsigma$ ．
 $\alpha v \tau \iota \mu \varepsilon \tau \omega \pi i \zeta \varepsilon \tau \alpha \iota \alpha \pi$ ȯ $\tau \eta \Delta \dot{u} \sigma \eta \quad \sigma \alpha v \alpha \pi o ́ \delta \varepsilon \iota-$ $\xi \eta$ тou ótı oı इoßıєтıкоi $\dot{\varepsilon} \chi$ оuv $\mu \varepsilon \gamma \dot{\alpha} \lambda \eta$

 software $\kappa \alpha \iota \cdot \dot{\varepsilon} \mu \pi \varepsilon \iota \rho$ ous $\chi \varepsilon ı \rho ı \sigma \tau \dot{\varepsilon} \varsigma$ compu－ ters tous oroious $\varepsilon \lambda \pi i \zeta$ ouv va $\dot{\varepsilon} \chi 00 \vee$ oтo $\mu \dot{\varepsilon} \lambda \lambda$ оv $\varepsilon \iota \sigma \dot{\alpha} \gamma \circ \vee \tau \alpha \varsigma ~ \tau \eta \nu \varepsilon \kappa \pi \alpha i \delta \varepsilon \cup \sigma \eta \sigma \tau \circ \cup \varsigma$ ขлолоүเбтغ́ऽ，$\sigma \varepsilon \quad \chi \alpha \mu \eta \lambda \dot{\varepsilon} \varsigma \beta \alpha \theta \mu i \delta \varepsilon \varsigma ~ \tau \eta \varsigma$ $\pi \alpha \iota \delta \varepsilon i \alpha \varsigma$.

 $\sigma \tau \dot{\varepsilon} \zeta \varepsilon \xi \alpha \rho \tau \eta \mu \dot{\alpha} \tau \omega v$ ，лоט $\pi \rho \circ \beta \lambda \dot{\varepsilon} \pi о \cup v \tau \eta \nu$

 （Iskra，Agat，Elektronika $\kappa . \dot{\alpha}$ ．）$\delta \varepsilon v \varepsilon i v \alpha \iota$ סuvatȯv va $\pi \alpha \rho \alpha \chi$ Өoủv $\sigma \varepsilon \quad \varepsilon \pi \alpha \rho \kappa \varepsilon і \varsigma$ $\pi о \sigma о ் \tau \eta \tau \varepsilon \varsigma ~ \mu \varepsilon ் \sigma \alpha ~ \sigma \tau \iota \varsigma ~ \pi \rho о к \alpha \theta о \rho ı \sigma \mu \varepsilon ் v \varepsilon \varsigma$ $\pi \rho \circ \theta \varepsilon \sigma \mu i \varepsilon \varsigma . \mathrm{O}$ к．Mannanov，$\mu \dot{\varepsilon} \lambda о \varsigma \tau \eta \varsigma$ $\varepsilon \iota \delta \iota \kappa \eta \dot{\varsigma} \varepsilon \pi \iota \tau \rho \circ \pi \eta \dot{\varsigma} \gamma \iota \alpha$ Өغ் $\mu \alpha \tau \alpha \pi \lambda \eta \rho \circ \varphi о-$

каvعiऽ $\delta \varepsilon v \quad \pi \lambda \eta \rho \varepsilon i \quad \tau \iota \zeta \alpha \pi \alpha \rho \alpha i \tau \eta \tau \varepsilon$ $\pi \rho о \delta \iota \alpha \gamma \rho \alpha \varphi \varepsilon ̇ \varsigma ~ \varepsilon v O ̇ \varsigma ~ \sigma \chi \circ \lambda$ ıкои̉ micro．．．θ
 $\varepsilon \xi \circ \pi \lambda i \sigma 0 \cup \mu \varepsilon \quad \dot{\lambda} \lambda \alpha$ $\tau \alpha$ $\sigma \chi \circ \lambda \varepsilon i \alpha \mu \alpha \varsigma \vdash$ $\pi \rho о \sigma \omega \pi \iota к о и ̆ \varsigma ~ c o m p u t e r s . . . " . ~$

То ки̇рıo $\chi \alpha \rho \alpha к т \eta \rho ı \sigma \tau ı к o ́ ~ \tau о и ~ v \dot{\varepsilon}$ $\pi \varepsilon v \tau \alpha \varepsilon \tau \circ \cup \check{̧} \pi \rho \circ \gamma \rho \dot{\mu} \mu \mu \alpha \tau \circ \varsigma$ عival ó oı $\alpha \pi$

 $\alpha \kappa \alpha \delta \eta \mu \alpha \ddot{\kappa} \dot{\omega} v$ ．Exouv $\sigma \cup v \varepsilon \rho \gamma \alpha \sigma \tau \varepsilon i \dot{\alpha}$ $\mu \alpha$ ó $\pi \omega \varsigma$ o Gury Marchuk，$\pi \rho \dot{\circ} \varepsilon \delta \rho \circ \varsigma$ tr
 T $\varepsilon \chi$ vo λ oүias к $\alpha \iota$ o Yevgeny Velikhov π $\eta \gamma \varepsilon i \tau \alpha \iota \tau 0 \cup \tau \mu \eta \dot{\mu} \alpha \tau \circ \varsigma$ Computer Engine ring $\sigma \tau \eta \nu \mathrm{A} \kappa \alpha \delta \eta \mu i \alpha$ E $\pi \iota \sigma \tau \eta \mu \dot{\omega} \nu$ or Mó $\sigma \chi \alpha$ ．
$\mathrm{H} \varepsilon \kappa \mu \varepsilon \tau \dot{\alpha} \lambda \lambda \varepsilon \cup \sigma \eta \eta \tau \omega v \delta u v \alpha \tau \circ \tau \eta \dot{\tau} \tau \nu \tau$ $\alpha v \alpha \mu \varphi \iota \sigma \beta \dot{\eta} \tau \eta \tau \alpha$ וк $\alpha v \dot{\omega} v$ б $\varepsilon \quad \theta \dot{\varepsilon} \mu \alpha \tau \alpha \quad \cup \psi$ $\lambda \dot{\eta} \varsigma \tau \varepsilon \chi$ vo $\lambda 0 \gamma i \alpha \varsigma ~ \theta \varepsilon \omega \rho \eta \tau \iota \kappa \dot{\omega} v \tau \eta \varsigma E . \Sigma . \Sigma$ ．
 β ıо $\eta \chi \alpha v i \alpha, \eta$ олоi α Ө $\pi \rho \varepsilon \pi \pi \varepsilon \imath$ v α үi人 $\alpha \pi о \delta о \tau \iota \kappa о ̇ \tau \varepsilon \rho \eta, \pi \rho о к \varepsilon \iota \varepsilon \dot{v}$ оv $v \alpha \pi \alpha \rho \dot{\gamma} \gamma$

 $\pi \rho о ் \sigma \varphi \alpha \tau \alpha \quad \alpha v \alpha \kappa о เ v \omega \theta \varepsilon i \sigma \varepsilon \varsigma \quad \alpha v \alpha \kappa \alpha \tau \alpha \tau$ $\xi \varepsilon ı \varsigma, \alpha \pi о \tau \varepsilon \lambda \circ$ oviv $\mu \iota \alpha \pi \rho \circ \sigma \pi \dot{\alpha} \theta \varepsilon \iota \alpha \sigma \tau \varepsilon v$ $\tau \varepsilon \rho \eta \varsigma \pi \rho о \sigma \dot{\varepsilon} \gamma \gamma i \sigma \eta \varsigma \tau \omega v$ v $\pi \circ \cup \rho \gamma \varepsilon i \omega v$
 үiveı η П $\lambda \varepsilon \kappa \tau \rho о$ vıкทं β юо $\eta \chi \alpha v i \alpha$ т
 $\tau \eta \varsigma ~ \alpha \gamma о \rho \alpha \dot{c}$ ．Yл $\dot{\alpha} \rho \chi \varepsilon \iota ~ \alpha к о ̇ \mu \eta \mu i \alpha \alpha v \alpha$

${ }_{\sigma} \beta \dot{\eta} \tau \eta \tau \eta \tau \dot{\alpha} \sigma \eta \varepsilon v \theta \dot{\alpha} \rho \rho \cup v \sigma \eta \varsigma \pi \varepsilon \rho \alpha \iota \tau \dot{\varepsilon} \rho \omega$
 $\alpha \tau \alpha \lambda \omega े \vee \kappa \alpha \iota \tau \eta v \varepsilon \pi i \tau \varepsilon \cup \xi \zeta \eta \cup \psi \eta \lambda \dot{\partial} \tau \varepsilon \rho \eta \varsigma$ เтлбтіая каı μ ıкро்тврои ко̇бтоия
 єктроуıкท่ऽ»．
 $\mu \dot{\varepsilon} \alpha, \mu \varepsilon \kappa \alpha \theta$ орьб $\mu \dot{\varepsilon} v \varepsilon \varsigma ~ \alpha v \dot{\alpha} \gamma \kappa \varepsilon \varsigma, \alpha \pi о-$ кvv̇ยı ótı oı $\sigma \tau \rho \alpha \tau \iota \omega \tau \iota \kappa \varepsilon \varsigma ~ \varepsilon \gamma \kappa \alpha \tau \alpha \sigma \tau \dot{\alpha}-$ $\varsigma \delta \varepsilon \sigma \cup \gamma \kappa \varepsilon v \tau \rho \dot{\omega} v o u v \alpha \pi \alpha \rho \alpha i \tau \eta \tau \alpha \dot{\partial} \lambda \eta$ $\pi \rho о \sigma о \chi \grave{\eta}$ ．Avтó $\sigma \cup \mu \beta \alpha i v \varepsilon \iota ~ t \delta ı \alpha i \tau \varepsilon \rho \alpha$ $v \tau \alpha \zeta \eta \tau \eta \dot{\mu} \mu \tau \alpha \alpha \varphi \circ \rho \circ$ öv о $\lambda \dot{\circ} \kappa \lambda \eta \rho \eta \tau \eta$
 $\alpha \rho \mu о \delta i \omega v$ v $\pi о \cup \rho \gamma \varepsilon i \omega v \pi \rho о \circ \rho i \zeta \varepsilon \iota \tau \eta \nu$ $\alpha \gamma \omega \gamma \dot{\eta} \quad \eta \lambda \varepsilon \kappa \tau \rho о v ⿺ \kappa \dot{\omega} \nu \quad \varepsilon \xi \alpha \rho \tau \eta \mu \dot{\alpha} \tau \omega \nu$ $\tau \eta$ б $\tau \rho \alpha \tau \iota \omega \tau \iota \kappa \dot{\eta} \beta \iota \rho \mu \eta \alpha v i \alpha$ ．
I $\alpha \rho^{\prime} \dot{o} \lambda \alpha \alpha \nu \tau \dot{\alpha}, \varepsilon i v \alpha \iota ~ \tau \dot{\omega} \rho \alpha$ $\varepsilon \pi i \sigma \eta \mu \alpha$
 $\alpha \pi \dot{0}$ то крд́ $\tau \circ \varsigma \tau \dot{\alpha} \sigma \eta \varsigma \gamma \iota \alpha \tau \eta v \dot{\varepsilon} v \alpha \rho \xi \eta$

 o mainframes $\gamma_{1} \alpha \tau \eta \nu$ Gosplan א $\alpha \iota \tau \alpha$
 $\alpha \iota \kappa \alpha \iota \sigma \tau \eta v \pi \lambda \eta \dot{\rho} \eta \eta \mu \eta \alpha v o \rho \gamma \dot{\alpha} v \omega \sigma \eta$ $\varphi \varepsilon i \omega v \mu \varepsilon \tau \eta v \dot{\varepsilon} v \nu o l \alpha \pi o v \dot{\varepsilon} \chi \varepsilon \iota \delta \iota \alpha \delta 0 \theta \varepsilon i$ $\dot{v} \tau \alpha \tau \alpha \sigma \tau \eta \Delta \dot{u} \sigma \eta$ ．$\Gamma_{i}^{\prime} \alpha \cup \tau \dot{\partial}, \alpha \sigma \kappa \varepsilon i \tau \alpha ı$ $\sigma \eta \gamma 1 \alpha \tau \eta v \varepsilon \pi i \sigma \pi \varepsilon v \sigma \eta \tau \eta \varsigma \pi \alpha \rho \alpha \gamma \omega \gamma \eta \zeta$ ó $\pi \iota \tau \omega \nu$ computers к $\alpha \iota$ tov $\alpha \pi \alpha \rho \alpha i-$ ou software，$\dot{\varepsilon} \tau \sigma \iota \dot{\omega} \sigma \tau \varepsilon \alpha \pi \dot{\partial} \tau \eta \sigma \tau \iota \gamma \mu \eta \dot{\eta}$ $\kappa \varepsilon \nu \tau \rho \iota \sigma \theta \varepsilon i$ то $\varepsilon v \delta \iota \alpha \varphi \dot{\rho} \rho \circ \nu \tau \eta \varsigma$ аүo－ ，va દivaı $\delta \cup v a \tau \eta \dot{\eta} \eta$ к $\dot{\lambda} \nu u \psi \eta$ $\eta \varsigma$

 $\lambda \eta \lambda \mathrm{ot}, \mu \varepsilon \tau \eta \chi \rho \dot{\eta} \sigma \eta \tau \omega v$ computers．A $\pi \dot{O}$ $\varepsilon \delta \dot{\omega}$ छєкiv $\eta \sigma \varepsilon$ к $\alpha \iota$ то $\varepsilon v \delta ı \alpha \varphi \dot{\varepsilon} \rho \circ \vee \gamma_{1 \alpha}$ $\kappa \alpha \lambda \dot{u} \tau \varepsilon \rho \eta \varepsilon \kappa \pi \alpha i \delta \varepsilon \cup \sigma \eta \pi \dot{\alpha} v \omega \sigma \varepsilon \zeta \eta \tau \eta \dot{\mu} \mu \tau \alpha$
 $\mu \eta \dot{\eta} \alpha \alpha$ 人акоเvஹ் $\theta \eta \kappa \varepsilon \alpha \pi \dot{\circ} \tau \eta \nu$ Ак $\alpha \delta \eta \mu i \alpha$
 Ivoтıтои்тои Пגŋрочорıкท่s каı Tع χ vo－
 To Ivo兀ıтovito $\theta \alpha \alpha \sigma \chi \circ \lambda \eta \theta \varepsilon i \mu \varepsilon \tau о \nu \tau \rho о ்$ то $\varepsilon \varphi \circ \delta \iota \alpha \sigma \mu \circ \Delta \dot{\tau} \tau \omega \nu \sigma \chi \circ \lambda \varepsilon i \omega \nu \mu \varepsilon$ computers， $\mu \varepsilon \tau \eta \nu \varepsilon \pi\left\llcorner\lambda \frac{\gamma \dot{\eta}}{} \tau \omega \nu \kappa \alpha \tau \dot{\alpha} \lambda \lambda \eta \lambda \omega \nu \gamma \lambda \omega \sigma-\right.$ $\sigma \omega ் \nu \pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \mu \circ \dot{\sim} \gamma_{1} \alpha \quad \delta \iota \delta \alpha \sigma \kappa \alpha \lambda i \alpha$ ，
 $\kappa \alpha \iota$ коเv $\omega v \iota \kappa \dot{\alpha} \pi \rho о \beta \lambda \eta \dot{\mu} \mu \alpha \alpha$ поט в $\pi \iota \varphi \cup-$ $\lambda \dot{\alpha} \sigma \sigma \varepsilon \iota \sigma \tau \alpha \pi \alpha \iota \delta \iota \dot{\alpha}, \eta \pi \rho \dot{\omega} \ddot{\mu} \mu \eta \varepsilon \xi$ о七к $\kappa i \omega \sigma \eta$ $\mu \varepsilon$ той $\eta \lambda \varepsilon \kappa \tau \rho \circ$ viкойऽ vлодоүเбтغ்ऽ．

 $\Sigma \tau \alpha \tau \dot{\varepsilon} \lambda \eta$ тŋऽ סєкаєтia¢ тou 1960，$\tau \alpha$ $\kappa \rho \dot{\alpha} \tau \eta-\mu \dot{\varepsilon} \lambda \eta$ $\eta \eta \varsigma К о \mu \varepsilon \kappa o ̇ v, ~ v t o \theta \dot{\varepsilon} \tau \eta \sigma \alpha v$ $\mu i \alpha$ $\sigma \varepsilon เ \rho \dot{\alpha} \pi \rho \dot{\tau} \tau \cup \pi \omega \nu \quad \sigma \chi \varepsilon \delta i \alpha \sigma \eta \varsigma \gamma \iota \alpha \tau \imath \varsigma$
 $\tau \eta \nu \alpha v \dot{\alpha} \pi \tau \cup \xi ̆ \eta$ عणós＂Eviaiou $\sum v \sigma \tau \eta \dot{\mu} \alpha-$

$\kappa \dot{\eta}, \kappa \dot{\alpha} \theta \varepsilon \chi \dot{\omega} \rho \alpha \alpha v \dot{\varepsilon} \lambda \alpha \beta \varepsilon \alpha \pi \dot{\pi} \dot{\varepsilon} v \alpha$ project
 $\gamma \kappa \varepsilon \kappa \rho \iota \mu \dot{\varepsilon} v o$ то $\varepsilon \dot{\varepsilon} \alpha$ $\tau \eta \nu \dot{\varepsilon} \rho \varepsilon \cup v \dot{\alpha}$ тךऽ． H
 λ оүi α бібк ωv к $\alpha \iota$ drives，η По $\lambda \omega v i \alpha$ oтous printers，η Ouy $\alpha \rho i \alpha$ oto software

 $\tau \omega v$ ．$\Delta \varepsilon v$ v $\pi \dot{\alpha} \rho \chi \circ u v$ $\pi о \lambda \lambda \dot{\alpha} \pi \varepsilon \rho \iota \theta \dot{\omega} \rho \iota \alpha$ $\alpha \mu \varphi \iota \beta$ одias $\gamma \iota \alpha \tau \eta \nu \dot{\alpha} \pi о \psi \eta$ òtı $\alpha \cup \tau$ т̇ то

 $\varepsilon \xi^{\prime}$ i $\sigma \circ v$ к $\lambda \lambda \dot{\alpha} \sigma u v \delta v \alpha \sigma \mu \varepsilon \dot{v o} \pi \rho o \dot{\gamma} \rho \alpha \mu \mu \alpha$

 $\Delta \dot{\sigma} \sigma \eta$ ．Mi α ס $\varepsilon \kappa \alpha \varepsilon \tau i \alpha \mu \varepsilon \tau \dot{\alpha} \tau \eta v \alpha v \alpha \gamma v \dot{\omega} \rho t-$ $\sigma \eta \tau \omega \nu \delta \nu v a \tau o \tau \eta \tau \omega \nu \tau \omega \nu$ computers $\sigma \tau \eta$

 Кобท่ $\gamma \kappa เ v, \eta \Sigma_{0} \beta \iota \varepsilon \tau \kappa \eta \dot{\kappa} \kappa \cup \beta \dot{\varepsilon} \rho \vee \eta \sigma \eta \dot{\alpha} \lambda \lambda \alpha-$ $\xi \varepsilon \tau \alpha \kappa \tau \iota \kappa \dot{\eta} . \mathrm{A} \varphi \iota \varepsilon \rho \omega \sigma \varepsilon \dot{\rho} \mu \omega \varsigma$ ò $\lambda \varepsilon \varsigma \tau \iota \varsigma$
 $\kappa \alpha \iota ~ \delta \iota \alpha \sigma \tau \eta \mu \iota \kappa \dot{\alpha} \pi \rho \circ \gamma \rho \dot{\alpha} \mu \mu \alpha \tau \alpha .^{\text {．Eт }} \boldsymbol{\iota}, \delta \varepsilon v$

 vovtaı о́тı к $\dot{\theta} \theta \varepsilon$ 兀ı π ои к $\dot{\alpha} v \varepsilon ı ~ \eta ~ \Delta \dot{v} \sigma \eta$ ，
 $\varepsilon \xi^{\prime}$ i $\sigma 0 \cup \kappa \alpha \lambda \dot{\alpha}$ ．B $\dot{\varepsilon} \beta \alpha \iota \alpha$ ，$\alpha v \gamma ı \alpha \tau \eta v \varepsilon \pi i-$
 $\sigma \kappa о \pi \varepsilon i \alpha \dot{\eta} \lambda \alpha \theta \rho \alpha i \alpha \varepsilon \xi \alpha \gamma \omega \gamma \dot{\eta} \alpha \pi \dot{\pi} \chi \dot{\omega} \rho \varepsilon \varsigma$
 $\gamma i \alpha \varsigma, \delta \varepsilon v \dot{\varepsilon} \chi \varepsilon \iota$ каı то̇бך $\sigma \eta \mu \alpha \sigma i \alpha$ ．
 $\pi \rho о \ddot{o} v \tau \omega \nu$ Пдпрочорькท்я $\tau \omega v \chi \omega \rho \dot{\nu}$ $\tau \eta \zeta$ Comecon，$\gamma v \omega \sigma \tau$ ȯ $\sigma \alpha v$ E．S．，$\pi \alpha \rho \eta \dot{\gamma} \alpha \gamma \varepsilon$ $\alpha \rho \chi ⿺ \kappa \dot{\alpha}$ тov Ryad 1，поט ทं $\tau \alpha \nu \alpha \pi о \mu і \mu \eta \sigma \eta$ $\tau \omega v$ mainframes IBM $360 \kappa \alpha \imath \alpha \rho \gamma$ о̇т $\tau \alpha$ тov Ryad 2，$\alpha \pi о \mu i \mu \eta \sigma \eta \tau \omega \nu$ IBM 370. $\Sigma \chi \varepsilon \delta \iota \alpha \sigma \mu \varepsilon \dot{\varepsilon} \alpha \alpha \dot{\varepsilon} \tau \sigma \iota \dot{\omega} \sigma \tau \varepsilon v \alpha \delta \iota \alpha \tau \eta \rho o u ̈ v \tau \eta$
 $\mu \circ v \tau \dot{\varepsilon} \lambda \alpha$ ES，$\dot{\varepsilon} \chi o u v$ रiveı standard $\sigma \tau 0$
 1040，1050， 1060 к $\alpha \iota \pi \iota \circ \tau \varepsilon \lambda \varepsilon \cup \tau \alpha i \alpha \tau \alpha$ ES 1065， 1066 тov $\lambda \dot{\varepsilon} \gamma \varepsilon \tau \alpha \iota$ ò $\tau \iota$ عival main－

 1060.
$\Sigma \tau \alpha \tau \dot{\lambda} \lambda \eta$ $\tau \eta \varsigma \delta \varepsilon \kappa \alpha \varepsilon \tau i \alpha \varsigma$ тou 1970，η $\alpha v \dot{\alpha} \gamma \kappa \eta \gamma_{\iota} \alpha \dot{\varepsilon} v \alpha \nu$ इoßıє兀ıкȯ mini－compu－
 Digital o $\delta \dot{\eta} \gamma \eta \sigma \varepsilon \sigma \tau 0 \sigma \chi \varepsilon \delta \iota \alpha \sigma \mu \circ \dot{\kappa} \kappa \wedge \iota \eta v$

ELITE STAR

IBM PC/XT/AT Full compatible

Проура́ината

Mnхаviкш்

- $\sum_{\text {tatik }}$
- $\Delta \eta \mu$. Epya
- Oбorotia
- Топоүрафіа

Еилоріка่ лакв்та

- Гev. Моүוотikn்
- Апоөп்кп
- Tıиодо́mon
- MıбӨобобіа к.д.п.

NetCommander

L.A.N.

Digital Products Inc. Simple Network Solutions For
Micro, Mini, Main Frames

 $\left.\sum \dot{\sigma} \sigma \tau \eta \mu \alpha\right)$. T α т $\varepsilon \lambda \varepsilon \cup \tau \alpha i \alpha \mu \circ v \tau \dot{\varepsilon} \lambda \alpha \alpha \cup \tau \eta \zeta$ $\tau \eta \varsigma ~ \sigma \varepsilon ı \rho \alpha \dot{̧}$ عivaı $\tau \alpha$ SM-6, SM-4 к $\alpha \iota$ SM-5, $\tau \alpha$ олоi α عivaı $\tau \dot{\omega} \rho \alpha$ $\delta \iota \alpha \theta \dot{\varepsilon} \sigma \iota \mu \alpha \kappa \alpha \iota \sigma \tau \eta$ $\Delta \dot{\sigma} \eta \eta \mu \dot{\varepsilon} \sigma \omega$ тои кратıкои் इoßเعтıкои்
 $\omega \varsigma$ Elektronorgtekhnika $\dot{\eta}$ Elorg $\gamma \iota \alpha$
 $\gamma \rho \alpha \varphi \varepsilon i \alpha$ ото Eлбіvкı к α то $\mathrm{N} \dot{\varepsilon}$ о $\Delta \varepsilon \lambda \chi i$, $\alpha \pi \dot{\circ} \tau \alpha$ олоі α катєиӨüvєı $\tau \iota \varsigma ~ \pi \omega \lambda \eta \dot{\eta} \sigma \iota \varsigma$.
 $\chi \varepsilon \iota \rho \iota \sigma \tau \varepsilon i$ тov SM-5, $\lambda \dot{\varepsilon} v \varepsilon$ ó $\tau \iota \varepsilon i v \alpha \iota ~ \kappa \dot{\alpha} \pi о \cup$ $\alpha v \alpha \dot{\mu} \mu \sigma \alpha$ oтоv PDP-11/34 каı 11/44 $\sigma \varepsilon$
 $\Delta \cup \tau \iota \kappa \dot{\alpha} \pi \varepsilon \rho \iota \varphi \varepsilon \rho \varepsilon \iota \alpha \kappa \dot{\alpha} \kappa \alpha \iota$ вivaı $\varphi \theta \eta$ ขȯтє-

To $\varepsilon \pi \dot{\jmath} \mu \varepsilon v o$ ооүıко́ $\beta \dot{\eta} \mu \alpha, \theta \alpha$ ท̇ $\tau \alpha \nu \eta$ $\alpha \pi о \mu i \mu \eta \sigma \eta \tau \omega \nu$ VAX к $\alpha \iota$ micro VAX. Y-

 $\sigma \tau \eta \dot{\alpha} \alpha \dot{\alpha} \lambda \frac{\gamma}{}$ ou $\tau 0 \cup$ VAX $\sigma \tau 0 \mathrm{Ki} \varepsilon \beta$. A $\lambda \lambda \dot{\alpha}$
 $\mu \eta \sigma \eta$. Exouv $\alpha v \alpha \pi \tau \dot{\jmath} \xi \varepsilon ⿺ \delta \dot{\alpha} \varphi \rho \rho \alpha \alpha \pi \lambda \dot{\alpha}$
 $\tau \alpha$ то PS-2000 ло̣v $\theta \varepsilon \omega \rho \varepsilon i \tau \alpha \iota$ о Σ Ко $\beta \tau \tau-$ кő̧ super-computer. O $\tau \varepsilon \lambda \varepsilon v \tau \alpha i o \varsigma$, , $\begin{gathered}\text { ivaı }\end{gathered}$ $\dot{\varepsilon} v \alpha \varsigma$ mainframe $\mu \varepsilon \pi \alpha \rho \dot{\alpha} \lambda \lambda \eta \lambda$ оטऽ $\mu \iota \kappa \rho \circ \varepsilon-$ $\pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \dot{\varepsilon} \varsigma \pi$ ои $\delta \varepsilon v \dot{\varepsilon} \chi \varepsilon \iota \alpha v \tau i \sigma \tau 01 \chi \circ \sigma \tau \eta$ $\Delta \dot{\sigma} \sigma \eta$. Avartúx $\theta \eta \kappa \varepsilon \alpha v \varepsilon \xi \dot{\alpha} \rho \tau \eta \tau \alpha \quad \sigma \tau \eta \nu$ ELEA, $\alpha \varphi o u ́ ~ \eta$ Control Data v π о $\chi \rho \varepsilon \dot{\omega}$ $\theta \eta \kappa \varepsilon \varepsilon \xi \alpha \iota \tau i \alpha \varsigma \quad \pi \varepsilon \varepsilon \varepsilon \varepsilon \omega \nu v \alpha \alpha \pi \sigma \chi \omega \rho \eta \eta^{\sigma} \sigma \iota$

O к $\alpha \theta \eta \gamma \eta \tau \eta \dot{\varsigma}$ тои Паvє Apı̧ỏva, Seymour Goodman, $\tau \sigma \chi \cup \rho i \zeta \varepsilon$ -
 $\tau \eta \lambda \varepsilon \pi \iota \kappa o l v \omega v i \varepsilon \varsigma$ عival π о $\lambda \dot{u} \quad \lambda i \gamma o \alpha v \alpha-$ $\pi \tau \cup \gamma \mu \dot{\varepsilon} v \eta, \gamma \iota \alpha \nu \alpha \mu \pi \circ \rho \dot{\varepsilon} \sigma \varepsilon \iota v \alpha \alpha v \tau \dot{\varepsilon} \xi \varepsilon \iota \tau \eta \nu$ $\alpha v \dot{\alpha} \pi \tau \cup \xi \eta \eta$ тŋऽ $\pi \lambda \eta \rho о \varphi о \rho ı к \eta ं \varsigma ~ \sigma \varepsilon \beta \alpha \theta \mu \dot{\circ}$

 טлобтทрі $\xi \varepsilon เ ~ \cup \psi \eta \lambda \eta \dot{\varsigma} \tau \alpha \chi \cup ் \tau \eta \tau \alpha \varsigma \alpha \nu \tau \alpha \lambda \lambda \alpha-$ $\gamma \dot{\varepsilon} \varsigma \pi \lambda \eta \rho \circ \varphi \circ \rho \iota \dot{\omega} v \mu \varepsilon$ datalinks. П $\rho \rho^{\prime} \dot{\partial} \lambda \alpha$ $\alpha \cup \tau \dot{\alpha}$, то micro ES-1800 $\chi \rho \eta \sigma$ тотоьєітаı $\dot{\eta} \delta \eta \quad \sigma \alpha \nu \quad \sigma \tau \alpha \theta \mu \dot{\varrho} \varsigma \rho \gamma \alpha \sigma i \alpha \varsigma \quad \sigma \tau \alpha \pi \rho \dot{\omega} \tau \alpha$

 $\varepsilon \gamma \kappa \alpha \theta i \sigma \tau \alpha \tau \alpha \iota \quad \sigma \tau \eta$ Mó $\sigma \chi \alpha$ $\sigma \dot{\cup} \mu \varphi \omega v \alpha \mu \varepsilon \tau \iota \varsigma$ $\tau \varepsilon \lambda \varepsilon \cup \tau \alpha i \varepsilon \varsigma \pi \lambda \eta \rho \circ \varphi о \rho i \varepsilon \varsigma . Y \pi \dot{\alpha} \rho \chi \circ u \nu \dot{\eta} \delta \eta$ $\sigma \chi \dot{\varepsilon} \delta \iota \alpha \gamma 1 \alpha$ $\tau \eta$ $\sigma \dot{v} \delta \delta \varepsilon \sigma \eta$ $\tau \rho \stackrel{\omega}{\nu} \alpha \pi \dot{\circ} \tau \alpha$

 $\delta \dot{\sigma} \sigma \varepsilon \iota \mu \varepsilon \gamma \alpha \lambda \cup ் \tau \varepsilon \rho \eta$ $\tau \alpha \chi \cup ๋ \tau \eta \tau \alpha$ к $\alpha \iota \kappa \alpha \lambda \cup ̇ \tau \varepsilon-$ ро $\sigma \dot{\eta} \mu \alpha$. Av $\dot{\lambda} \lambda \sigma \alpha \sigma \cup \sigma \tau \dot{\eta} \mu \alpha \tau \alpha \dot{\eta} \delta \eta \lambda \varepsilon \iota-$ тоирүоűv $\sigma \tau$ о $\Lambda \dot{\varepsilon} v เ v \gamma к \rho \alpha v \tau$ каı бто Гко́ $\rho \kappa \iota$, $\sigma \dot{\mu} \mu \varphi \omega v \alpha \mu \varepsilon$ то $\mathrm{Y} \pi$ оирүвіо E $\pi \iota \kappa o t v \omega v i \dot{\omega} v$. E $\pi i \sigma \eta \varsigma, \pi \alpha \rho \dot{\alpha} \lambda \lambda \eta \lambda \alpha \mu^{\prime}$ $\alpha \cup \tau \dot{\alpha}, \alpha v \alpha \pi \tau \dot{\sigma} \sigma \sigma \varepsilon \tau \alpha \iota \mu \iota \alpha$ ठ $\varepsilon \dot{\tau} \tau \varepsilon \rho \eta \gamma \varepsilon v i \alpha \dot{\alpha}$
$\sigma \cup \sigma \tau \eta \mu \dot{\alpha} \tau \omega v$ ол兀ıкळ்้ เvต்v $\pi 0 \cup \theta \alpha$ $\sigma \pi \varepsilon v ் \sigma \varepsilon \iota ~ \tau \eta v \varepsilon \gamma \kappa \alpha \tau \dot{\alpha} \sigma \tau \alpha \sigma \eta$ datalinks vy
 $\varepsilon \xi \varepsilon \lambda t \gamma \mu \varepsilon \dot{\varepsilon} v \alpha \alpha \cup \tau \dot{\alpha} \sigma \cup \sigma \tau \dot{\eta} \mu \alpha \tau \alpha \theta \alpha \chi \rho \varepsilon \iota \alpha$ $\nu \tau \alpha \iota ~ \varepsilon v i \sigma \chi \cup \tau \varepsilon ̇ \varsigma ~ \alpha v \alpha \dot{1} 100 \mathrm{~km}$.

 $\rho \omega v \quad \gamma / \alpha$ v $\alpha \mu \pi$ оройv v α к $\alpha \lambda$ u̇чouv

 ழо́ $\rho \omega v \gamma \iota \alpha \mu \varepsilon \tau \dot{\alpha} \delta \circ \sigma \eta$ т $\eta \lambda \varepsilon \varphi \omega v / \kappa \dot{\omega} v \sigma$ $\delta \iota \alpha \lambda \varepsilon \xi \xi \varepsilon \omega v$ каı $\delta \iota \alpha \kappa i v \eta \sigma \eta$ data. I σ аutȯ $v \alpha$ оठ $\eta \gamma \eta \dot{\sigma} \sigma \varepsilon \iota \sigma \tau \eta \nu \varepsilon \kappa \pi \lambda \dot{\eta} \rho \omega \sigma \eta \tau$ $\mu \varepsilon \gamma \alpha \lambda \dot{\partial} \pi$ voov $\sigma \chi \varepsilon \delta i o u$ поט $\alpha \varphi о \rho \dot{\alpha}$ $\alpha v \dot{\pi} \pi \tau \cup \xi ̧ \eta$ тov кратıкои் סıктט்ou da Ogas.

To $\delta i \kappa \tau \tau v o ~ \alpha v \tau o \dot{,}, \sigma \dot{u} \mu \varphi \omega v \alpha \mu \varepsilon \dot{\varepsilon} v \alpha \dot{\alpha} \rho \theta$ $\sigma \tau \eta \nu$ Economic Gazette $\tau \eta \varsigma$ Mȯ $\sigma \chi \alpha \varsigma \tau$ А $\pi \rho і \lambda 1 о, \theta \alpha \kappa \alpha \lambda \dot{\nu} \psi \varepsilon ı \kappa \dot{\alpha} \theta \varepsilon \quad \delta \eta \mu о к \rho \alpha$
 $\mu i \alpha \varsigma . \Theta \alpha \beta \alpha \sigma i \zeta \varepsilon \tau \alpha \iota \quad \sigma \varepsilon$ кратıкג $\tau о \pi \iota$ $\kappa \varepsilon ̇ v \tau \rho \alpha$ computers, π ov $\theta \alpha$ $\sigma \tau 0 \chi \varepsilon \dot{v}$ vouv σ
 $\pi \eta \gamma \dot{\omega} v$. To Ogas, $\varphi \alpha i v \varepsilon \tau \alpha \iota v \alpha$ عivaı
 $\rho \eta \sigma \eta \varsigma ~ к \alpha ı \pi \alpha \rho \alpha \kappa \lambda \dot{\alpha} \delta \iota ~ \tau \eta \varsigma ~ G o s p l a n . ~$ $\alpha v \alpha \pi \tau \cup \chi \theta \varepsilon i \quad \sigma \tau \eta \rho \iota \zeta \dot{\mu} \mu \varepsilon v o$ тȯбo $\sigma \tau \iota \varsigma \dot{\eta}$
 $\varepsilon \gamma \kappa \alpha \tau \alpha \sigma \tau \dot{\alpha} \sigma \varepsilon เ \varsigma ~ v \pi \mathrm{o} \lambda \mathrm{o} \iota \sigma \tau \dot{\omega} v$. $\mathrm{O} \dot{\alpha} \theta \lambda$

Ако̇ $\mu \alpha \pi \iota \circ$ عv $\delta t \alpha \varphi \dot{\varepsilon} \rho \circ v$, вivaı то $\gamma \varepsilon$ vós ó $\tau \iota$ ol $\Sigma o ß \imath \varepsilon \tau \iota k o i ~ \alpha \pi o \varphi \alpha \dot{\sigma} \iota \sigma \alpha v$
 $\sigma \tau \dot{\omega} v \tau \dot{\varepsilon} \tau \alpha \rho \tau \eta \varsigma \gamma \varepsilon v \iota \alpha \dot{\kappa} \kappa \alpha \iota \pi \rho \circ \chi \dot{\omega} \rho \eta \sigma$ $\kappa \alpha \tau \varepsilon \cup \theta \varepsilon i \alpha \nu \quad \sigma \varepsilon \dot{\varepsilon} v \alpha \Omega \rho o \dot{\gamma} \rho \alpha \mu \mu \alpha \gamma 1 \alpha \tau$ $\pi \dot{\varepsilon} \mu \pi \tau \eta \gamma \varepsilon v i \dot{\alpha}$. To $\pi \rho \dot{\gamma} \gamma \rho \alpha \mu \mu \alpha \kappa \alpha \lambda \dot{v} \pi \tau \varepsilon \iota$ $\mathrm{i} \delta \iota \alpha \gamma \varepsilon \nu \iota \kappa \dot{\alpha} \sigma \eta \mu \varepsilon i \alpha \mu \varepsilon \tau \alpha \alpha \nu \tau i \sigma \tau 0 \iota \chi \alpha \sigma$ $\Delta \dot{u} \sigma \eta, \alpha \lambda \lambda \dot{\alpha} \delta \varepsilon v \dot{\varepsilon} \chi \varepsilon \varepsilon \quad \sigma \tau \rho \alpha \tau \iota \omega \tau \iota \kappa o ̇ \chi \alpha \rho$

 $100,000,000 \gamma \iota \alpha$ то δ เд̇ $\sigma \tau \eta \mu \alpha$ 1984-90. μ óvo π ov $\mu \varepsilon \dot{\varepsilon} v \varepsilon ı, ~ \varepsilon i v \alpha ı ~ v \alpha ~ \delta o u ́ \mu \varepsilon ~ \alpha v$ $\tau \varepsilon \lambda \varepsilon \cup \tau \alpha i \varepsilon \varsigma \quad \varepsilon \xi \varepsilon \lambda i \xi \varepsilon \iota \varsigma \quad \sigma \tau \eta \nu \pi 0 \lambda \iota \tau \iota \kappa \eta$
 λ óठo६ous!

ПOF MA ADEKETA KOEIIE EAATO ITO A AOPMO HH COMAATO：

[^1]
case study

 TO SUPERMARKIEI
 noy fexteal ano

 Cinzia Laurelli.

E

 $\kappa \alpha \tau \alpha \sigma \kappa \varepsilon v \alpha \sigma \tau \varepsilon i \alpha \pi$ о̇ $\rho о \mu \pi$ о̇т. $\Sigma \dot{\eta} \mu \varepsilon \rho \alpha \sigma \tau \iota \varsigma$ $\pi i o ~ \alpha v \varepsilon \pi \tau v \gamma \mu \varepsilon ̇ v \varepsilon \varsigma ~ \beta ı о \mu \eta \chi \alpha v i \kappa \alpha \dot{\alpha} \chi \dot{\omega} \rho \varepsilon \varsigma, \tau \alpha$

 vยı $\cup \pi \alpha \dot{\kappa} \kappa \cup \alpha, \mu \varepsilon \tau \alpha \chi \cup ̇ \tau \eta \tau \alpha \kappa \alpha \iota \alpha \kappa \rho i \beta \varepsilon ı \alpha$,
 $\varepsilon \rho \gamma \alpha \sigma i \varepsilon \varsigma . ~ \Lambda \dot{\varepsilon} \gamma \varepsilon \tau \alpha \iota \quad \mu \dot{\alpha} \lambda_{1} \sigma \tau \alpha$, i $\sigma \omega \varsigma \mu \varepsilon$
 $\tau \varepsilon \rho \dot{\alpha} \sigma \tau \iota \alpha$ в $\rho \gamma \sigma \sigma \dot{\alpha} \sigma \iota \alpha$ поט $\delta \varepsilon \quad \chi \rho \eta \sigma \iota \mu$ о-

Evஸ் ó $\mu \omega \varsigma ~ \eta t \delta \varepsilon \dot{\varepsilon} \alpha$ тоט $\rho о \mu \pi \delta \dot{\tau}-\beta ı \rho \eta-$

 $\mu \circ v \iota \kappa \eta ं \varsigma ~ \varphi \alpha v \tau \alpha \sigma i \alpha \varsigma . ~ H ~ \alpha ́ \mu \varepsilon \sigma \eta ~ \alpha \lambda \lambda \eta \lambda \varepsilon \pi i-$
$\delta \rho \alpha \sigma \eta \pi \omega \lambda \eta \tau \dot{\eta}-\alpha \gamma o \rho \alpha \sigma \tau \dot{\eta}$, عivaı $\mu i \alpha$

 $\mu \eta \tau о \cup \varsigma ~ \pi \alpha \rho \alpha \dot{\gamma} о \nu \tau \varepsilon \varsigma . ~ Г \imath ' \alpha \cup \tau о \dot{\prime}, \mu \dot{\varepsilon} \chi \rho \imath \sigma \eta \dot{\eta} \mu \varepsilon-$ $\rho \alpha \tau \alpha$ ро $л$ оंт $\varepsilon \mu \varphi \alpha v i \zeta o v \tau \alpha \nu \sigma \tau \alpha \mu \varepsilon \gamma \dot{\alpha} \lambda \alpha$
 $\kappa \alpha \iota \delta \varepsilon \delta \iota \varepsilon \kappa \pi \varepsilon \rho \alpha i \omega v \alpha v$ к $\alpha \mu \iota \dot{\alpha} \pi \rho \alpha \gamma \mu \alpha \tau \iota \kappa \alpha \dot{\alpha}$ טлєธ்Өиขך ع $\rho \gamma \alpha \sigma i \alpha$ ．
$\Gamma \imath \alpha$ ó $\lambda \alpha \tau \alpha \pi \rho \dot{\alpha} \gamma \mu \alpha \tau \alpha \dot{\partial} \mu \omega \varsigma v \pi \dot{\alpha} \rho \chi \varepsilon \iota \mu \iota \alpha$ $\alpha \rho \chi \eta \dot{\eta} . \Sigma \tau \eta \sigma \cup \gamma \kappa \varepsilon \kappa \rho \iota \varepsilon \dot{\varepsilon} \geqslant \eta \pi \varepsilon \rho i \pi \tau \omega \sigma \eta, \eta$ $\alpha \rho \chi \dot{\eta} \dot{\varepsilon} \gamma เ v \varepsilon$ бто $\pi \lambda \eta \dot{\rho} \omega \varsigma$ аขтоиатолоเ η－ $\mu \varepsilon \dot{v}$ o Supermarket Seiru tou Tóкıo．$\Sigma \tau \eta$
 кат $\alpha \sigma \tau \eta \dot{\mu} \alpha \tau \circ \varsigma, \tau \alpha$ роило் $\pi \alpha i \zeta$ ouv ovđı $\alpha-$ бтเко̇тато ро̇えо．

ЕлıбкєழӨウ்к $\alpha \mu \varepsilon$ то Seiru каı ларако－
 тov．Мпорои́ $\varepsilon \varepsilon$ v α той $\mu \varepsilon \mu \dot{\alpha} \lambda \iota \sigma \tau \alpha$ ，о் τ $\sigma \tau \alpha \theta \dot{\eta} \kappa \alpha \mu \varepsilon$ เ $\delta \iota \alpha i \tau \varepsilon \rho \alpha$ $\tau \cup \chi \varepsilon \rho \circ i, \gamma \iota \alpha \tau i$ o七
 $\psi \alpha v v \alpha \pi \alpha \rho \alpha \mu \varepsilon i v o v \mu \varepsilon \kappa \alpha ı$ ȯ $\tau \alpha v$ ot π о̇ $\rho \tau \varepsilon \varsigma$ $\dot{\varepsilon} \kappa \lambda \varepsilon \iota \sigma \alpha \nu \gamma \iota \alpha$ то коıvó．＇Eтбı，к $\alpha \tau \alpha \varphi \dot{\varepsilon} \rho \alpha-$ $\mu \varepsilon v \alpha \delta о \cup ̇ \mu \varepsilon \alpha \kappa о ́ \mu \eta \kappa \alpha \iota \tau \eta v$ « $\alpha \theta \dot{\varepsilon} \alpha \tau \eta » \gamma \iota \alpha$
 $\lambda \varepsilon \iota$ тоирүіац тои．

ПРОГГЕI $\Sigma \Sigma H$ ГTO MEAAON

$\Sigma \tau \eta \sigma \chi \varepsilon \delta i \alpha \sigma \eta$ тou Seiru $\sigma u v \varepsilon \rho \gamma \dot{\alpha} \sigma \tau \eta-$
 $\gamma \rho \alpha \varphi \varepsilon i \alpha \mu \varepsilon \lambda \varepsilon \tau \dot{\omega} \nu \kappa \alpha \iota \alpha \rho \kappa \varepsilon \tau \varepsilon \in \varsigma \alpha \pi \dot{\circ} \tau \iota \varsigma$
 nyo，Sharp，Danichi K．Ko Robotics， Namco，Nippon，Electric，Fujitsu，Matsu－ shita Electric，Mitsubishi，Pioneer Electric

Со，$\kappa \lambda \pi$ ．）．$\Theta \alpha \xi \varepsilon \kappa ı v \eta ं \sigma о \cup \mu \varepsilon \tau \eta \nu \pi \alpha \rho o v \sigma i \alpha-$
 $\lambda \dot{\varepsilon} \sigma \mu \alpha \tau<\varsigma \alpha \cup \tau \dot{\jmath} \varsigma \tau \varsigma \sigma \cup v \varepsilon \rho \gamma \alpha \sigma i \alpha \varsigma, \pi \alpha \rho \circ$－ $\sigma \grave{\alpha} \zeta o v \tau \alpha \varsigma \tau \eta \delta \iota \alpha \mu \dot{\rho} \rho \varphi \omega \sigma \eta \tau \omega v \chi \dot{\omega} \rho \omega v \tau \circ v$ Seiru к $\alpha \iota \tau \omega v$ кирเо̇т $\rho \omega \nu$ 人ขтои α толоเ $\eta-$ $\mu \dot{\varepsilon} v \omega v \sigma \cup \sigma \tau \eta \mu \dot{\alpha} \tau \omega v \pi$ поט $\dot{\varepsilon} \chi \circ \cup \vee \cdot \varepsilon \gamma \kappa \alpha \tau \alpha \sigma \tau \alpha-$ $\theta \varepsilon i \quad \sigma \varepsilon \kappa \alpha \theta \dot{\varepsilon} v \alpha \nu \alpha \pi$ ó $\alpha \cup \tau o u ́ s . ~$

О $\alpha \kappa \dot{\alpha} \lambda \cup \pi \tau \circ \varsigma \chi \dot{\omega} \rho \circ \varsigma \dot{\varepsilon} \xi \omega \alpha \pi \dot{\sigma}$ то ктірıо тou Supermarket，$\chi \omega \rho i \zeta \varepsilon \tau \alpha \iota \quad \sigma \varepsilon$ ठ $\tau \mu \dot{\eta} \mu \alpha \tau \alpha$ ：$\sigma \tau$ O Parking $\kappa \alpha \iota$ б $\tau о \nu$ K $\dot{\pi} \pi$ ． To $\varepsilon \sigma \omega \tau \varepsilon \rho \iota \kappa$ о̇ тоט ктı ρ iov，$\pi \varepsilon \rho \iota \lambda \alpha \mu \beta \dot{\alpha} v \varepsilon \iota$

 $\alpha \pi о \theta \dot{\eta} \kappa \eta \varsigma$ каı $\varepsilon \lambda \dot{\varepsilon} \gamma \chi \circ \cup \tau \omega \nu$ аитонато－ $\pi о \imath \eta \mu \dot{\varepsilon} v \omega v$ $\sigma \cup \sigma \tau \eta \mu \dot{\alpha} \tau \omega v$ ．
$\Sigma \tau о \chi \dot{\omega} \rho \circ$ тоט Parking，$\dot{\varepsilon} \chi \varepsilon \iota \varepsilon \gamma \kappa \alpha \tau \alpha \sigma \tau \alpha-$ $\theta \varepsilon i$ то $\lambda \varepsilon \gamma \dot{\rho} \mu \varepsilon v o$＂Avто $\mu \tau$ тотоı $\eta \mu \dot{\varepsilon} v o$ σ ט̇бт $\eta \mu \alpha$ Parking»．To $\pi \iota \frac{\alpha}{\alpha} \mu \varepsilon \sigma \alpha$ op $\alpha \tau \dot{~}$ $\tau \mu \eta \dot{\mu} \alpha$ тov，हivaı то Роило́т－Єvрюро́s．
 то＂$\alpha \pi \lambda о \pi о ı \imath \mu \varepsilon ் v o ~ \sigma v ் \sigma \tau \eta \mu \alpha ~ \varepsilon \pi ı к о เ v \omega-~$ vi $\alpha \varsigma$＂．Проऽ то $\pi \alpha \rho o \dot{v}, \theta \alpha$ $\sigma v v \varepsilon \chi i \sigma o v \mu \varepsilon$ $\alpha \cup \tau \eta \dot{\tau} \tau \nu \pi \rho \dot{\omega} \tau \eta$ $\sigma \cup v o \pi \tau \iota \kappa \eta \dot{\eta} \pi \varepsilon \rho เ \gamma \rho \alpha \varphi \dot{\eta}$ ，
 $\pi \alpha \rho o v \sigma i \alpha \sigma \dot{\eta} \tau 0 v$.

Мغ̇ $\sigma \alpha$ бто ктірıо，$\dot{\varepsilon} \chi \circ u \vee ~ \varepsilon \gamma к \alpha \tau \alpha \sigma \tau \alpha \theta \varepsilon i:$
1）To $\alpha \cup \tau \dot{\mu} \mu \alpha \tau о$ $\sigma \dot{\sigma} \sigma \tau \eta \mu \mu \varepsilon \tau \alpha \varphi о \rho \dot{\alpha} \varsigma$－ $\tau о \pi о \theta \dot{\varepsilon} \tau \eta \sigma \eta \varsigma$ в $\mu \pi о \rho \varepsilon \cup \mu \dot{\alpha} \tau \omega \mathrm{v}$ ．Мغ்роऽ
 －$\mu \varepsilon \tau \alpha \varphi о \rho \varepsilon і \varsigma$.
2）To $\varepsilon \sigma \omega \tau \varepsilon \rho \iota \kappa o ́ ~ \sigma u ̇ \sigma \tau \eta \mu \alpha$ monorail $\gamma ı \alpha$ $\mu \varepsilon \tau \alpha \varphi о \rho \dot{\alpha} \mu \eta \nu \nu \mu \dot{\alpha} \tau \omega v$ ．
3） $\mathrm{O} \pi \omega \lambda \eta \tau \dot{\eta} \varsigma \alpha \lambda \alpha v \tau\llcorner\kappa \dot{\omega} \nu(\dot{\eta} \rho о \mu \pi \dot{\sigma} \tau$－ ＂$\sigma \alpha \lambda \alpha \mu о \pi о \imath \eta \tau \dot{\varsigma}$＂）．
4）To $\sigma \dot{\sigma} \sigma \tau \eta \mu \alpha \tau \omega \nu$ P．O．S（Point of Sale

Terminals）π ou β pioкєt $\alpha \iota \sigma$ on－lin
 $\gamma \iota \sigma \tau \eta$ ．
 vл $\dot{\alpha} \rho \chi о \cup v$ $\sigma \varepsilon \kappa \dot{\alpha} \theta \varepsilon \pi \dot{\alpha} \gamma \kappa о$ к $\alpha \iota ~ \alpha v \alpha \gamma \rho \dot{0}$ ழouv $\tau \iota \varsigma \tau \iota \varepsilon \dot{\varepsilon} \tau \omega v \pi \rho \circ$ öòv $\tau \omega \nu$ ．K $\alpha \cup \tau \varepsilon \varepsilon \varsigma ~ \varepsilon i v a ı ~ \sigma u v \delta \varepsilon \delta \varepsilon \mu \varepsilon ̇ \nu \varepsilon \varsigma ~ \mu \varepsilon$ то

 $\delta \varepsilon$ ：
 $\mu \pi \alpha \tau \alpha \rho і \varepsilon \varsigma ~ \varphi о \rho \tau \iota \zeta \dot{\partial} \mu \varepsilon v \varepsilon \varsigma ~ \alpha \pi о ̇ ~ \varphi \omega \tau о к и$ $\psi \dot{\varepsilon} \lambda \varepsilon \varsigma$ ．
 $\lambda \varepsilon \varsigma \dot{\alpha} \mu \circ \rho \varphi \eta \zeta$ $\sigma \iota \lambda เ \kappa o ̇ v \eta \varsigma, \tau \omega \nu \mu \pi \alpha \tau 0$ $\rho!\dot{\omega} v \gamma \iota \alpha \tau \alpha \varphi \dot{\omega} \tau \alpha \alpha \sigma \varphi \alpha \lambda \varepsilon i \alpha \varsigma$.
3）To $\rho о \mu \pi \delta \dot{\tau}-\pi \omega \lambda \eta \tau \eta \dot{\eta} \alpha \cup \dot{\omega} v$ ．
 $\alpha \pi \circ \theta \dot{\eta} \kappa \eta \varsigma-\varepsilon \lambda \dot{\varepsilon} \gamma \chi \circ v, \nu \pi \dot{\alpha} \rho \chi \circ \cup v:$
1） $\mathrm{X} \dot{\omega} \rho \circ \iota \alpha \cup \tau \dot{\mu} \mu \alpha \tau \eta \varsigma ~ \alpha \pi о \sigma \tau \varepsilon і \rho \omega \sigma \eta \varsigma ~ к о$ $\varepsilon \xi \alpha \varepsilon \rho 1 \sigma \mu \circ \dot{\text { ® }}$
2）$\Sigma \dot{\sigma} \sigma \tau \eta \mu \alpha \alpha \nu \tau \dot{\mu} \mu \alpha \tau \eta \varsigma \mu \varepsilon \tau \alpha \varphi о \rho \dot{\alpha} \varsigma$ є $\varepsilon \pi \circ$ $\rho \varepsilon \cup \mu \dot{\alpha} \tau \omega \nu \alpha \pi \dot{o}$ то人 $\varepsilon \xi \omega \tau \varepsilon \rho ⿺ \kappa \dot{\alpha} \chi \dot{\omega} \rho$ $\sigma \tau \eta \nu \alpha \pi \circ \theta \dot{\eta} \kappa \eta$ ．
3）$\Sigma \dot{\sigma} \sigma \tau \eta \mu \alpha$ аvто̇ $\mu \alpha \tau \eta \varsigma ~ \mu \varepsilon \tau \alpha \varphi о \rho \alpha \dot{\varsigma}$ ка $\tau о \pi о \theta \dot{\varepsilon} \tau \eta \sigma \eta \varsigma \quad \varepsilon \mu \pi о \rho \varepsilon \nu \mu \dot{\alpha} \tau \omega \nu \quad \sigma \tau \alpha \rho \dot{~}$
 $\sigma \cup \sigma \tau \eta \dot{\mu} \tau<\varsigma$ аитоט̇ हival to $\rho о \mu \pi \dot{0}$ S－stacker．
Tо ки̇к $\lambda \omega \mu \alpha \mu \varepsilon \tau \alpha \varphi о \rho \alpha \dot{\varsigma} \pi \rho о \ddot{o} v \tau \omega v$ ，σ $\mu \pi \lambda \eta \rho \dot{\omega} v \varepsilon \tau \alpha \iota \alpha \pi$ ȯ $\tau \rho i \alpha$ بо $\rho \tau \eta \gamma \dot{\alpha}, \kappa \alpha \theta \dot{\varepsilon} v$
 $\mu \alpha \tau \eta \varsigma \varphi о ் \rho \tau \omega \sigma \eta \varsigma-\varepsilon \kappa \varphi о ் \rho \tau \omega \sigma \eta \varsigma$.

H EПIธКЕЧH MAг ธTO SEIRU

To Seiru，ó $\pi \omega \varsigma$ ві $\pi \alpha \mu \varepsilon, \delta i \alpha \theta \dot{\varepsilon} \tau \varepsilon \iota \quad \delta ı \kappa$ тov Parking．Прıv ó $\mu \omega \varsigma \kappa \alpha \nu \mu \pi о \cup ் \mu \varepsilon \sigma$
 $\pi \rho \dot{\tau} \tau \eta \mu \alpha \gamma v \omega \rho \iota \mu i \alpha \mu \varepsilon \tau \alpha$ ро μ ло่ то Supermarket．$\Sigma \tau \eta v \varepsilon$ вiбoठo，то аитокіv $\eta \tau$ $\mu \alpha \varsigma \quad \sigma \tau \alpha \mu \dot{\alpha} \tau \eta \sigma \varepsilon \quad \alpha v \alpha \gamma \kappa \alpha \sigma \tau \iota \kappa \dot{\alpha} \alpha \pi \dot{~} \mu \mathrm{I}$ $\kappa \alpha \tau \varepsilon \beta \alpha \sigma \mu \varepsilon \in \eta \eta \quad \mu \pi \dot{\alpha} \rho \alpha$ ．$\Delta i \pi \lambda \alpha \quad \sigma^{\prime} \alpha \cup \tau \eta \dot{v}$ $\kappa \alpha \dot{\tau} \omega \alpha \pi \dot{\delta} \dot{\varepsilon} v \alpha \sigma \tau \dot{\varepsilon} \gamma \alpha \sigma \tau \rho \circ$ ，вivaı $\varepsilon \gamma \kappa \alpha \tau \varepsilon$

 $\kappa \alpha \iota \quad \sigma \varepsilon \mathrm{A} \gamma \gamma \lambda \iota \kappa \dot{\eta} \gamma \lambda \dot{\omega} \sigma \sigma \alpha$ ．＇Е $\pi \varepsilon ı \tau \alpha, \mu \alpha$ $v \pi \dot{\varepsilon} \delta \varepsilon \iota \xi \varepsilon \quad v \alpha \quad \pi \dot{\alpha} \rho \circ \cup \mu \varepsilon \quad \mu \iota \alpha \mu \alpha \gamma \vee \eta \tau \iota \kappa 1$
 $\tau \eta \nu \tau о \pi \circ \theta \varepsilon \tau \eta \dot{\sigma} \circ \cup \mu \varepsilon \sigma \varepsilon \mu \iota \alpha \sigma \chi \iota \sigma \mu \eta \dot{\eta}$ ．Аழо $\mu \alpha \varsigma \quad \varepsilon \pi \varepsilon \dot{\varepsilon} \sigma \tau \varepsilon \psi \varepsilon \tau \eta \nu$ к $\alpha \rho \tau \alpha$ ，$\dot{\alpha} v o \iota \xi \varepsilon \varepsilon \tau$ $\mu \pi \dot{\alpha} \rho \alpha$ عוбóठov，$\alpha \varphi \eta \dot{\eta} v o v \tau \dot{\alpha} \varsigma \mu \alpha \varsigma v \alpha \pi \varepsilon \rho \dot{\alpha}$ $\sigma о \cup \mu \varepsilon$ $\sigma \tau о \chi \dot{\omega} \rho \circ$ тоט Parking．
M ε тo $\dot{\alpha} v o r \gamma \mu \alpha \tau \eta \varsigma \mu \pi \dot{\alpha} \rho \alpha \varsigma, \eta \dot{\alpha} \varphi \iota \xi \eta \dot{\eta} \mu$ $\varepsilon i \chi \varepsilon$ ทं $\delta \eta$ к $\alpha \tau \alpha \chi \omega \rho \eta \theta \varepsilon i$ o $\sigma о$ Contro Terminal，поט β рібкє $\tau \alpha \iota \mu \varepsilon \dot{\varepsilon} \sigma \alpha \sigma \tau о к \tau і р ı$

 tou to Өридıкó «тZívı»．Tрíbovtą̧ то $\lambda u x v a ́ p ı, ~ \varepsilon ́ 6 y a ı v \varepsilon ~$

 Micral 30．O personal computer，mou avtí yıa to

O Bull Micral 30，то «TZívเ» tףc Bull，Bүŋ́кع anó ह́va

 mıтои́ бuvtрóழou，tou mo入útiцou ouvepүátף．Гiatio

 véous opíZovtę．
 кı＇av عívaı oı aváүкєৎ баৎ，o Bull Micral 30，
 Software，Өa oaç bүáлعı па入ıка́pı．

 kukiopopoúv－ε ívaı anó入uta compatible－araıtгíтє

O computer τ ov $\rho \circ \mu \pi$ ȯ τ, $\dot{\varepsilon} \sigma \tau \varepsilon \iota \lambda \varepsilon$ тo $\sigma \chi \varepsilon \tau \iota \kappa o ̇ \mu \eta \dot{v} v \mu \alpha, \delta \eta \lambda \alpha \delta \dot{\eta}$ ó $\lambda \varepsilon \varsigma, \tau \iota \varsigma \pi \lambda \eta \rho o-$

 коเvตviac. Avтó тo $\tau \varepsilon \lambda \varepsilon \cup \tau \alpha i o, \mu \varepsilon \tau \alpha \delta i \delta \varepsilon \iota$ $\alpha \sigma \dot{\rho} \rho \mu \alpha \tau \alpha \lambda \eta \rho \circ \varphi о \rho і \varepsilon \varsigma, \mu \varepsilon \mu ⿺ \kappa \rho о к и ̇ \mu \alpha \tau \alpha$ $\sigma \cup \chi v o \dot{\tau} \eta \tau \alpha \varsigma \pi \varepsilon \rho i \pi \circ \cup 50 \mathrm{GHz}$. 'O $\pi \omega \varsigma \mu \alpha \varsigma$ $\varepsilon i \pi \alpha \nu$, то $\sigma \dot{\sigma} \sigma \tau \eta \mu \alpha \mu \pi$ о $\rho \varepsilon i \quad \nu \alpha \mu \varepsilon \tau \alpha \delta \dot{\omega} \sigma \varepsilon \iota$

 $3 \chi \downarrow \lambda \iota \rho \mu \dot{\varepsilon} \tau \rho \omega \mathrm{v}, \mu \varepsilon$ олоเ $\varepsilon \sigma \delta \dot{\eta} \pi о \tau \varepsilon \kappa \alpha \iota \rho เ к \varepsilon ่ \varsigma$ $\sigma \cup v \theta \dot{\eta} \kappa \varepsilon \varsigma \kappa \alpha \iota \pi \alpha \rho \alpha \dot{\alpha} \tau \eta \nu \dot{\jmath} \pi \alpha \rho \xi{ }^{\eta} \eta \pi \alpha \rho \alpha \sigma i-$ $\tau \omega v$.

E $\delta \omega \dot{\omega} \theta \alpha \pi \rho \dot{\pi} \pi \varepsilon ı$ v $\alpha \alpha v \alpha \varphi \dot{\rho} \rho о \nu \mu \varepsilon$ ȯ òı, то $\pi \alpha \rho \kappa \alpha \dot{\alpha} \iota \sigma \mu$ б τ O Seiru $\delta \varepsilon v$ عivaı $\delta \omega \rho \varepsilon \dot{\alpha} v$,
 $\delta \omega \rho \varepsilon \dot{\alpha} v \pi 0 \cup \theta \varepsilon v \dot{\alpha} \sigma \tau$ То́кıo. K $\dot{\tau} \tau \dot{\alpha} \lambda \lambda о$ $\pi \circ \cup \pi \rho \varepsilon ̇ \pi \varepsilon \iota \varepsilon \pi i \sigma \eta \zeta v \alpha \alpha v \alpha \varphi \varepsilon \rho \circ \cup \mu \varepsilon$, $\varepsilon i v \alpha \iota$ ó τ ó óot $\alpha \pi \dot{\text { ó }}$ тous $\pi \varepsilon \lambda \dot{\alpha} \tau \varepsilon \varsigma$ tov Seiru $\varepsilon i v \alpha ı$
 $\tau і \pi о \tau \varepsilon \dot{\alpha} \lambda \lambda o \alpha \pi \dot{\delta} \kappa \dot{\alpha} \rho \tau \alpha \quad \gamma 1 \alpha$ Electronic Banking, $\mu \pi$ opou̇v v $\alpha \mu \pi$ ouv $\sigma \tau$ Parking $\chi \rho \eta \sigma \iota \mu о \pi о \iota \omega \dot{\nu \tau \alpha \varsigma ~ \tau \eta \nu \alpha v \tau i} \gamma \iota \alpha \tau \iota \varsigma \kappa \dot{\alpha} \rho \tau \varepsilon \varsigma$ $\pi о \cup \pi \rho о \sigma \varphi \dot{\varepsilon} \rho \varepsilon \iota ~ \tau о ~ \rho о \mu \pi о \dot{\tau}$ - θ טрю ρ о́s. Mò $\lambda ı \varsigma ̧ ~ о \lambda о к \lambda \eta \rho \dot{ळ o o u v ~ \tau ı \varsigma ~ \alpha \gamma о \rho \varepsilon ́ \varsigma ~ \tau о и \varsigma ~}$ $\sigma \tau о$ к $\alpha \tau \dot{\alpha} \sigma \tau \eta \mu \alpha$, « $\pi \lambda \eta \rho \dot{\omega} v o v \vee » ~ \mu \varepsilon \tau \eta v$ $\kappa \alpha \dot{\rho} \tau \alpha$ Saison. Eлıтрغ̇лоuv $\delta \eta \lambda \alpha \delta \dot{\eta} \sigma \tau \circ v$ $\tau \alpha \mu i \alpha$ va $\mu \varepsilon \tau \alpha \beta \imath \beta \dot{\alpha} \sigma \varepsilon \iota$ то $\pi \circ \sigma \dot{\circ}$ тทऽ
 Parking) $\alpha \pi$ ȯ tov $\pi \rho \circ \sigma \omega \pi$ ıкȯ tous λ оү α рı $\alpha \sigma \mu$ о̇ бто $\lambda о \gamma \alpha \rho ı \alpha \sigma \mu$ о̇ τ ои к $\alpha \tau \alpha \sigma \tau \eta \dot{\mu \alpha-~}$ tos.

$\Psi \Omega$ INIZONTAE... HAEKTPONIKA

А $о$ о́ $\pi \alpha \rho \kappa \dot{\alpha} \rho \alpha \mu \varepsilon$ то $\alpha \cup \tau о к і v \eta \tau o \dot{~} \mu \alpha \varsigma$, $\mu \pi \eta \dot{\kappa \alpha \mu \varepsilon} \sigma \tau$ о к $\alpha \tau \dot{\alpha} \sigma \tau \eta \mu \alpha$. ${ }^{\circ}$ O $\pi \omega \varsigma$ $\sigma \varepsilon \dot{\circ} \lambda \alpha$ $\tau \alpha$ Supermarkets $\tau 0 \cup$ кȯ $\sigma \mu$ оv, غ̇ $\tau \sigma \iota$ к $\alpha \iota$
 $\tau \alpha \kappa \alpha \tau о \tau \sigma \dot{\alpha} \kappa \iota \alpha$ поט β о η оо́v τ оиऽ $\pi \varepsilon \lambda \dot{\alpha} \tau \varepsilon \varsigma$
 $\tau \alpha \kappa \alpha \rho о \tau \sigma \dot{\alpha} \kappa \iota \alpha$ тоט Seiru $\varepsilon i v \alpha \iota \lambda i \gamma o \ldots \delta \iota \alpha-$甲орєтьк α. K $\alpha \theta \dot{\varepsilon} v \alpha \alpha \pi$ о̇ $\alpha \cup \tau \dot{\alpha}, \varepsilon v \sigma \omega \mu \alpha \tau \dot{\nu} v \varepsilon \iota$

 $\sigma \tau \varepsilon ̇ \gamma a \sigma \tau \rho 0$.
 vподоүเбтท่ каı $\sigma \eta \mu \varepsilon เ \omega \mu \alpha \tau \alpha \dot{\rho} เ$.
3 To avtoкivŋто $\mu \pi \alpha i v e ı$ бто Parking tov :
4 М $\varepsilon \tau \alpha \lambda \lambda . เ \kappa \eta ่ ~ \tau \alpha เ v i \alpha-o \delta \eta \gamma o ̇ \varsigma ~ \gamma ı \alpha$ robots.
 $\pi і \sigma \omega$ тоט то $\varphi о р \tau \omega \mu \varepsilon \dot{v o} \mu \varepsilon \varepsilon \mu \pi о \rho \varepsilon \dot{u} \mu \alpha \tau \alpha$ $\tau \rho \dot{\partial} \lambda \varepsilon \dot{\square}$.
$60 \mu \eta \chi \alpha v เ \kappa \delta<~ \beta \rho \alpha \chi i o v a \varsigma ~ \pi о \nu ~ \tau о \pi ь \theta \varepsilon \tau \varepsilon i$ $\varepsilon \mu \pi о \rho \varepsilon \dot{\mu} \mu \alpha \tau \alpha \sigma \tau \alpha$ рáqıa.

ABETile idx i, Il ypipour סev łaypacpouv...

 $\sigma \tau \iota \gamma \mu \eta \dot{ }$ ．

Пع $\pi \pi \tau \dot{v} \nu \tau \alpha \varsigma \quad \alpha v \dot{\alpha} \mu \varepsilon \sigma \alpha$ $\sigma \tau \alpha$ $\rho \dot{\alpha} \varphi t \alpha$ ， $\pi \alpha \rho \alpha \tau \eta \rho \eta \dot{\sigma} \alpha \mu \varepsilon \sigma \tau о \pi \dot{\alpha} \tau \omega \mu \alpha \mu \tau \alpha \pi \rho i \varepsilon \rho \gamma \eta$ $\mu \varepsilon \tau \alpha \lambda \lambda_{1} \kappa \dot{\eta} \tau \alpha ı v i \alpha$ поט к $\alpha \tau \dot{\alpha} \delta ı \alpha \sigma \tau \eta \dot{\mu} \mu \tau \alpha$ $\sigma \cup v o \delta \varepsilon \cup \dot{\tau} \tau \alpha \nu \alpha \pi \dot{\rho} \mu \iota \kappa \rho \dot{\alpha} \tau \varepsilon \tau \rho \alpha \gamma \omega v \dot{\alpha} \kappa \iota \alpha$ ． H $\pi \varepsilon \rho เ \dot{\varepsilon} \rho \gamma \varepsilon 1 \alpha \dot{\alpha} \mu \varsigma \varsigma \nless \alpha \tau \eta \chi \rho \eta \dot{\sigma} \eta \tau \eta \varsigma \tau \alpha, v i \alpha \varsigma$ $\delta \varepsilon v \kappa \rho \dot{\alpha} \tau \eta \sigma \varepsilon \pi$ по $\lambda \dot{u} . \Sigma \varepsilon \lambda i \gamma о$ ，$\dot{\varepsilon} v \alpha \alpha \cup \tau о к ı-$ voú $\mu \varepsilon v o$ robot $\varepsilon \mu \varphi \alpha v i \sigma \tau \eta \kappa \varepsilon \kappa \alpha \iota \alpha \dot{\alpha} \rho \iota \sigma \varepsilon v \alpha$ $\kappa ı v \varepsilon i \tau \alpha \iota \kappa \alpha \tau \dot{\alpha} \mu \dot{\eta} \kappa \circ \varsigma \tau\rceil \varsigma \tau \alpha \iota v i \alpha \varsigma . \Sigma \tau \alpha \mu \alpha-$
 $\kappa \alpha \tau \dot{\alpha} \delta \iota \alpha \sigma \tau \eta \dot{\mu} \mu \tau \alpha \quad \gamma 1 \alpha$ v $\alpha \delta 1 \alpha \varphi \eta \mu i \sigma \varepsilon \iota \quad \tau \alpha$ $\pi \rho \circ$ öō $\tau \alpha \alpha$ ооט $\pi \rho о \sigma \varphi \dot{\varepsilon} \rho о \nu \tau \alpha \nu \sigma \varepsilon \dot{\varepsilon} \kappa \pi \tau \omega \sigma \eta$
 $\varepsilon \pi \iota \sigma \kappa \varepsilon ̇ \pi \tau \varepsilon \varsigma$.

TO SEIRU OTAN ФEYГOYN Oi חEAATE

 $\kappa \alpha \tau \dot{\alpha} \sigma \tau \eta \mu \alpha$ عivaı αv о七к兀o่，$\alpha \lambda \lambda \dot{\alpha} \kappa \alpha \iota \sigma \tau \alpha$
 $\varepsilon \mu \pi о \rho \varepsilon \dot{u} \mu \alpha \tau \alpha \sigma \tau \alpha \rho \dot{\varphi} \varphi t \alpha$ ．

Av $\dot{\alpha} \tau \alpha \tau \varepsilon \lambda \varepsilon \cup \tau \alpha i \alpha, \alpha \pi \circ \tau \varepsilon \lambda \circ \cup ๋ v \mu \dot{\varepsilon} \rho \circ \varsigma$ тоט $\alpha \cup \tau о \mu \alpha \tau о \pi о เ \eta \mu \varepsilon ் v o v ~ \sigma \cup \sigma \tau \eta \dot{\mu} \mu \tau о \varsigma ~ \mu \varepsilon-$

 $\mu \alpha \varsigma \dot{\varepsilon} \delta \omega \sigma \varepsilon \quad \tau \eta \nu \dot{\alpha} \delta \varepsilon \iota \alpha$ v $\alpha \pi \alpha \rho \alpha \mu \varepsilon i v o \cup \mu \varepsilon$ $\kappa \alpha \iota$ ò $\tau \alpha v$ оı π о́ $\rho \tau \varepsilon \varsigma ~ \varepsilon ̇ \kappa \lambda \varepsilon ı \sigma \alpha v ~ \gamma ı \alpha ~ \tau о ~ к о เ v o ̇ . ~$ Tót ε ，ó λ ot ot $v \pi \dot{\alpha} \lambda \lambda \eta \lambda$ ot $\varepsilon \kappa \tau$ ós $\alpha \pi$ ó 2－3 π тоט $\varepsilon i \chi \alpha v \beta \dot{\alpha} \rho \delta ı \alpha, \sigma \chi o \dot{\partial} \lambda \alpha \sigma \alpha v \kappa \alpha \iota \dot{\varepsilon} \varphi \cup \gamma \alpha v$ ．
Σ＇$\alpha \cup \tau$ оं то $\sigma \eta \mu \varepsilon i o, \dot{\alpha} \rho \chi ı \varepsilon$ то＂$\varphi \alpha v \tau \alpha-$

 $\dot{\varepsilon} v \alpha \kappa \alpha \rho \dot{\tau} \tau \sigma \iota ~ \varphi о \rho \tau \omega \mu \varepsilon \dot{v o} \mu \varepsilon \varepsilon \mu \pi о \rho \varepsilon \dot{\jmath} \mu \alpha \tau \alpha$ ，
 оноьо́ $\mu о \rho \varphi \alpha$ коитід． $\mathrm{K} \dot{\alpha} \theta \varepsilon$ то̇бо то
 $v \tau \alpha \varsigma ~ \tau о ~ \alpha \rho \theta \rho \omega \tau$ о̇ $\mu \eta \chi \alpha v$ ко่ $\chi \dot{\varepsilon} \rho \iota ~ \tau о \cup$
 коитід $\sigma \tau 0 \cup \varsigma ~ \pi \dot{\alpha} \gamma$ коия．

 $\kappa \dot{\alpha} \theta \varepsilon \tau \alpha เ v i \alpha$ о computer $\dot{\varepsilon} \chi \varepsilon \iota ~ \kappa \alpha \tau \alpha \gamma \rho \dot{\alpha} \psi \varepsilon \iota$
 $\pi о \sigma о \dot{\tau} \eta \tau \alpha \kappa \alpha \iota \dot{\alpha} \lambda \lambda \alpha$ र $\rho \dot{\sigma} \sigma \mu \alpha$ отоь $\chi \varepsilon i \alpha$ ． $\Gamma \iota \alpha$ к $\dot{\theta} \theta \varepsilon$ $\pi \rho \circ$ ӧov，$\cup \pi \dot{\alpha} \rho \chi \varepsilon \iota \quad \mu \iota \alpha$ ทं $\delta \eta$ $\kappa \alpha \theta$ орı $\sigma \mu \dot{\varepsilon} v \eta$ $\theta \dot{\varepsilon} \sigma \eta$ $\sigma \varepsilon \kappa \dot{\alpha} \pi о t o v \pi \dot{\alpha} \gamma \kappa о . \mathrm{H}$ $\theta \dot{\varepsilon} \sigma \eta$ ，$\sigma \eta \mu \varepsilon \iota \dot{\omega} v \varepsilon \tau \alpha \iota \alpha \pi$ ȯ $\mu \iota \alpha \mu \alpha \gamma \vee \eta \tau \iota \sigma \mu \dot{\varepsilon}-$ $v \eta \tau \alpha ı v i \alpha$ поט $\dot{\varepsilon} \chi \varepsilon \iota ~ \varepsilon \pi \iota \kappa о \lambda \lambda \eta \theta \varepsilon i$ єкєi．To
 $\mu \alpha \gamma \vee \eta \tau \iota \kappa \dot{\varepsilon} \varsigma ~ \tau \alpha ı v i \varepsilon \varsigma ~ \tau о \cup \pi \dot{\alpha} \gamma \kappa о \cup$ к $\alpha \iota \tau \omega v$ $\pi \alpha \kappa \varepsilon ̇ \tau \omega v, ~ \beta \rho і \sigma \kappa \varepsilon \iota ~ \tau \iota \zeta ~ \alpha \nu \tau \iota \sigma \tau о \iota \chi i \varepsilon \varsigma ~ \kappa \alpha \iota$ $\xi \varepsilon \varphi о \rho \tau \dot{\omega} v \varepsilon ı$ ．
$B \dot{\varepsilon} \beta \alpha \iota \alpha$ ，то $\pi \rho \omega \hat{\iota}, \chi \rho \varepsilon \iota \dot{\alpha} \zeta \varepsilon \tau \alpha \iota ~ \kappa \dot{\alpha} \pi о \iota \alpha$ $\alpha v \theta \rho \dot{\omega} \pi \imath v \eta \pi \alpha \rho \dot{\varepsilon} \mu \beta \alpha \sigma \eta \pi \rho о к \varepsilon \iota \mu \dot{\varepsilon} v o v \quad v \alpha$ $\tau \alpha \xi ı \nu о \mu \eta \theta \varepsilon i$ то $\pi \varepsilon \rho เ \varepsilon \chi \dot{\rho} \mu \varepsilon v o ~ \tau \omega \nu$ кои $\tau \iota \dot{\nu}$ （ $\pi \cdot \chi \cdot \sigma \alpha \pi о \dot{v} \nu \alpha) \pi \dot{\alpha} v \omega \sigma \tau о v \pi \dot{\alpha} \gamma \kappa о$ ．${ }^{\circ} \mathrm{O} \mu \omega \varsigma$ ， $v \pi \dot{\alpha} \rho \chi$ оиv каı π о $\lambda \lambda \dot{\alpha} \quad \pi \rho о$ öv $\tau \alpha$（ $\pi . \chi$ ． $\kappa \iota \beta \dot{\omega} \tau \iota \alpha \mu \varepsilon \alpha v \alpha \psi \cup \kappa \tau \iota \kappa \dot{\alpha} \dot{\eta} \mu \pi \dot{\rho} \rho \varepsilon \varsigma) \pi о v$

 $\theta \varepsilon i \quad \sigma \tau \circ \pi \rho \circ \sigma \varepsilon \chi \dot{\varepsilon} \varsigma \mu \dot{\varepsilon} \lambda \lambda \frac{}{}$ ． $\mathrm{H} \delta \eta \nu \pi \dot{\alpha} \rho \chi \varepsilon \iota$
 $\pi \varepsilon \iota \rho \alpha \mu \alpha \tau \iota \dot{\alpha} \pi \rho \circ \varsigma$ то $\pi \alpha \rho о \dot{v} \gamma \iota \alpha \quad v \alpha$
 $\sigma \tau \iota \varsigma ~ \theta \dot{\varepsilon} \sigma \varepsilon \iota \varsigma \tau 0 \cup \varsigma ~ \pi \alpha \dot{\alpha} \omega \sigma \tau \alpha$ р $\dot{\varphi} \varphi \iota \alpha$ ．М π о $\rho \varepsilon i$
 $\mu \iota \kappa \rho \dot{\alpha} \alpha v \tau \iota \kappa \varepsilon \dot{i} \mu \varepsilon v \alpha, \alpha \lambda \lambda \dot{\alpha} \kappa \alpha \iota \mu \varepsilon \gamma \alpha \lambda \cup \dot{\tau} \varepsilon \rho \alpha$ ， $\delta t \alpha \sigma \tau \dot{\alpha} \sigma \varepsilon \omega v \mu \dot{\varepsilon} \chi \rho \stackrel{10 \times 12 \times 8 \mathrm{~cm} \text { к } \alpha \iota}{ } \beta \dot{\alpha} \rho \circ \cup \varsigma$

 $\gamma \rho \alpha \mu \mu \alpha \pi о \cup \mu \varepsilon \tau \alpha \beta \dot{\alpha} \lambda \lambda \varepsilon \tau \alpha \iota$ єúко $\lambda \alpha$ к $\varphi о \rho \dot{\alpha} \pi \circ \cup \alpha \lambda \lambda \dot{\alpha} \zeta \varepsilon \iota ~ \tau о ~ \varepsilon i \delta o \varsigma ~ \tau \omega \nu \pi \rho \circ$ $v \tau \omega v$ ．To $\nu \psi \eta \lambda \dot{o}$ ко̇бтоऽ $\pi \alpha \rho \alpha \gamma \omega \gamma$

 тоия $\sigma \eta ँ \mu \varepsilon \rho \alpha$ ．
－O $\tau \alpha v \mu \pi \eta \dot{\kappa \alpha \mu \varepsilon ~ \sigma \tau \alpha ~ « \alpha \dot{\alpha} \delta \nu \tau \alpha » \tau \omega v \chi \dot{\omega} \rho}$ $\pi \rho о \sigma \omega \pi \iota \kappa \circ \dot{-}-\alpha \pi о \theta \dot{\eta} \kappa \eta \varsigma \dot{\eta} \tau \alpha \vee \dot{\eta} \delta \eta$ vüx $\Pi \rho ı v$ о́ $\mu \omega \varsigma \pi \rho о \chi \omega \rho \dot{\sigma} \sigma о \nu \mu \varepsilon \sigma \tau \eta v \pi \varepsilon \rho \iota \gamma \rho$ $\varphi \dot{\eta} \tau \omega \nu \delta \rho \alpha \sigma \tau \eta \rho \iota \tau \eta \dot{\eta} \tau \omega \nu \pi \circ \nu \varepsilon i \delta \alpha \mu \varepsilon \varepsilon \kappa$ $\theta \alpha \alpha v \alpha \varphi \dot{\varepsilon} \rho о \cup \mu \varepsilon \mu \iota \alpha \delta \iota \alpha \pi i \sigma \tau \omega \sigma \dot{\eta} \mu \alpha \varsigma . \Sigma$ Seiru，$\pi 0 \cup \theta \varepsilon v \dot{\alpha} \delta \varepsilon v ~ v \pi \dot{\alpha} \rho \chi \varepsilon \iota \mu \nu \rho \omega \delta \dot{\alpha} \kappa \alpha$
 Avтȯ $\varepsilon \pi \iota \tau \cup \gamma \chi \dot{\alpha} v \varepsilon \tau \alpha \iota \mu \varepsilon$ غ̇v α аטто̇ $\mu \alpha$ $\sigma \dot{\sigma \tau \tau \mu \alpha \kappa \lambda ı \mu \alpha \tau ı \sigma \mu \circ ט ், ~ \pi о ט ~ \pi \alpha \rho \varepsilon ̇ \chi \varepsilon ı}$ $\kappa \dot{\alpha} \theta \varepsilon \chi \dot{\omega} \rho о$ тov к兀ıрiov $\alpha \dot{\varepsilon} \rho \alpha \mu \varepsilon \sigma \omega \sigma$
 $\tau \alpha \delta \omega \mu \alpha \dot{\tau} \iota \alpha \quad \tau \omega v \quad \psi \cup \gamma \varepsilon i \omega v, \theta \varepsilon \omega \rho o u ̈ v \tau$ $\chi \dot{\omega} \rho \circ \iota ~ t \delta \iota \alpha i \tau \varepsilon \rho \eta \varsigma ~ \pi \rho о \sigma о \chi \eta \dot{\zeta}$ ．$\Sigma^{\prime} \alpha \cup \tau$ тоиऽ $\chi \dot{\omega} \rho \circ \cup \varsigma, ~ v \pi \dot{\alpha} \rho \chi \varepsilon \iota ~ к \cup к \lambda о \varphi о \rho i \alpha \alpha \pi$ $\sigma \tau \varepsilon เ \rho \omega \mu \varepsilon \dot{\varepsilon} v o \nu \alpha \dot{\varepsilon} \rho \alpha$ ．
Σ тous $\chi \dot{\omega} \rho \circ \cup \varsigma ~ \pi \rho о \sigma \omega \pi \iota \kappa о и ̆ ~ к \alpha \iota ~ \alpha \pi о \theta$ $\kappa \eta \varsigma, ~ \theta \alpha \nu \mu \dot{\alpha} \sigma \alpha \mu \varepsilon \dot{\varepsilon} v \alpha$ поди̇ $\pi \rho о \eta \gamma \mu \dot{\varepsilon}$
 $\tau \omega \sigma \eta \varsigma$ каı $\alpha \pi о \theta \dot{\eta} \kappa \varepsilon \cup \sigma \eta \varsigma$ ．＇O $\pi \omega \varsigma$ вілан $\dot{\eta} \delta \eta$ ，то Seiru $\varepsilon \xi$ vлп $\rho \varepsilon \tau \varepsilon i \tau \alpha \iota ~ \alpha \pi o ̇ ~ \tau \rho i$ $\varphi о \rho \tau \eta \gamma \dot{\alpha}$, то $\kappa \alpha \theta \dot{\varepsilon} v \alpha \alpha \pi$ ó $\tau \alpha$ о $\tau 0 i \alpha \delta 1 \alpha \theta \dot{\varepsilon} \tau$ $\sigma \dot{\sigma} \sigma \tau \eta \mu \alpha \alpha \cup \tau \dot{\partial} \mu \alpha \tau \eta \varsigma \varphi \dot{\rho} \rho \tau \omega \sigma \eta \varsigma-\varepsilon \kappa \varphi \dot{0}$ $\tau \omega \sigma \eta \varsigma . K \dot{\alpha} \theta \varepsilon \varphi о \rho \tau \eta \gamma \dot{0}, \chi \omega \rho \dot{\alpha} \varepsilon \iota \mu \dot{\varepsilon} \chi \rho \iota$ containers $\varepsilon \mu \pi о \rho \varepsilon u \mu \dot{\alpha} \tau \omega v$ ．Mó $\lambda \iota \varsigma \dot{\varepsilon} \rho \theta$

NEA MONTIORS

Еухршиа

Néo Sanyo 14" CD-3195 C yıa Commodore 64, plus 4, MSX kaı Spectrum. Tpeıc عíooסoı (CHROMA, LUMINANCE/PAL, AUDIO)
Néo TOEI 12" 1201 P/R $\mu \varepsilon$ PAL Video composite, ńxo kaı RGB. High resolution.
 DMC-6650 yia Commodore 128,
DMC-6855, DMC-8650: To μ оטt'́̀ λ o tns по טЧП入ท́ऽ عuкрі́veıac.

Фí̀тра каı ßáoعıç yıa Monitors.

Movóxpwua

Nźa Sanyo 4112/4212, $6112 \mu \varepsilon$ ท́xo

- Yчп入ń вuкрíveıa

- AvtiӨauß $\boldsymbol{\text { - }}$ tiká
 8412, 1212, DM-9112 μ ع ßáon үıа IBM каı $\alpha ́ \lambda \lambda$ oı үıа кá $\theta \varepsilon$ Computer.

H ппүท́ ота Monitors Пผ́дŋоŋ хоvбןıкŋ́

 $\tau \eta \nu \pi \dot{\rho} \rho \tau \alpha-\alpha \sigma \alpha v \sigma \dot{\varepsilon} \rho \pi<\cup \delta \iota \alpha \theta \dot{\varepsilon} \tau \varepsilon ⿺, \tau \alpha$ containers．
 $\pi \alpha i \rho v \varepsilon \iota \tau \alpha$ containers $\kappa \alpha \iota \tau \alpha$ тото $\theta \varepsilon \tau \varepsilon i \not \approx \varepsilon$ $\mu \iota \alpha \dot{\alpha} \lambda \lambda \eta \theta \dot{\varepsilon} \sigma \eta$ ，$\varepsilon \pi i \sigma \eta \zeta \dot{\varepsilon} \xi \zeta \omega \alpha \pi \dot{\partial} \tau \eta \nu$ $\alpha \pi 0 \theta \eta \dot{\eta} \kappa \eta$ ．$\Sigma \tau \eta$ v $\dot{\varepsilon} \alpha$ $\theta \dot{\varepsilon} \sigma \eta$ ，$\tau \alpha$ containers

 $\tau \varepsilon \lambda \varepsilon เ \dot{\omega} \sigma \varepsilon \iota \alpha \cup \tau \dot{\eta} \eta \delta \iota \alpha \delta \iota \kappa \alpha \sigma i \alpha$ ，то $\rho о \mu \pi$ о̇－

 $\varepsilon \iota \delta \iota \kappa \alpha \dot{\alpha} \rho \alpha \dot{\varphi} \varphi \alpha \mu \varepsilon \dot{\sigma} \sigma \alpha \sigma \tau \eta \nu \alpha \pi \sigma \theta \dot{\jmath} \kappa \eta$ ．A $\pi \dot{\circ}$

 $\pi \varepsilon \rho ı \gamma \rho \alpha \dot{\alpha} \alpha \mu \varepsilon$ ．H ó $\lambda \eta \delta \iota \alpha \delta ı \kappa \alpha \sigma i \alpha \lambda \varepsilon \iota \tau \circ \cup \rho-$ $\gamma \varepsilon i \kappa \alpha \iota \alpha v \tau i \sigma \tau \rho \circ \varphi \alpha$（ π ．χ ．то $\rho о \mu \pi$ о̇ τ по $\varepsilon \xi ้ \cup \pi \eta \rho \varepsilon \tau \varepsilon i$ то $\kappa \alpha \tau \dot{\alpha} \sigma \tau \eta \mu \alpha \mu \alpha \zeta \varepsilon \cup \dot{\varepsilon} \varepsilon \frac{\tau}{} \alpha$ $\dot{\alpha} \delta \varepsilon \iota \alpha$ кı $\beta \dot{\omega} \tau \iota \alpha$ $\alpha v \alpha \psi \cup \kappa \tau \iota \kappa \dot{\omega} v \kappa \alpha \iota \quad \tau \alpha$ $\mu \varepsilon \tau \alpha \varphi \varepsilon \dot{\rho} \varepsilon \iota \quad \sigma \tau \eta \nu \alpha \pi \circ \theta \dot{\eta} \kappa \eta$ ．Ало̇ $\varepsilon \kappa \varepsilon i \quad \tau о$ S－ stacker $\tau \alpha \mu \varepsilon \tau \alpha \varphi \dot{\varepsilon} \rho \varepsilon \iota \sigma \tau 0$ container（ $\kappa \lambda \pi$ ．）．
 $\dot{\varepsilon} v \alpha \pi \rho o i ̈ o ̋ v \theta \alpha \kappa \lambda \eta \sigma \tau \varepsilon i \quad \sigma \tau 0$ container $\alpha \pi$ ȯ $\tau \circ v \pi \rho \circ \mu \eta \theta \varepsilon \cup \tau \eta \dot{,}, \theta \alpha \varphi \theta \dot{\alpha} \sigma \varepsilon \iota \sigma \tau \alpha \rho \alpha \dot{\varphi} \varphi \iota \alpha$ тоט Supermarket $\chi \omega \rho i \varsigma v \alpha \pi \alpha \rho \dot{\varepsilon} \mu \beta \varepsilon \iota \alpha v \theta \rho \dot{\omega}-$ $\pi เ v o \chi \varepsilon \dot{\varepsilon} \rho$ ．Н $\alpha \cup \tau о \mu \alpha \tau о \pi о ı \eta \mu \varepsilon \dot{v} \eta \delta \iota \alpha \delta \iota \kappa \alpha-$ $\sigma \dot{\alpha} \alpha \mu \varepsilon \tau \alpha \varphi \circ \rho \alpha \dot{\varsigma}$－$\alpha \pi \circ \theta \dot{\eta} \kappa \varepsilon \cup \sigma \eta \varsigma-\tau о \pi \circ \theta \dot{\varepsilon}-$
 $\dot{\varepsilon} \lambda \varepsilon \gamma \chi \circ$ тоט computer toט кат $\alpha \sigma \tau \eta \mu \alpha \tau \circ$ ，
 $\sigma^{\prime} \alpha \cup \tau o ̇ v \tau \alpha \alpha \pi \alpha \rho \alpha i \tau \eta \tau \alpha$ $\sigma \tau \circ \iota \chi \varepsilon i \alpha$ ．

TI AムAO ©A $\triangle O Y N$ TA MATIA MAE！

A¢ $\xi \alpha v \alpha \gamma \cup \rho i \sigma o \cup \mu \varepsilon$ ó $\mu \omega \varsigma ~ \mu \varepsilon ̇ \sigma \alpha ~ \sigma \tau о ~$
 роило்т－бадацолоเๆт门்．
2 То роило̇т－$\pi \omega \lambda \eta \tau \grave{\zeta} \varsigma \alpha \gamma \dot{\omega} v$.
 बто $\sigma \alpha \lambda ̈$ övt tov Seiru．

 ò $\lambda \alpha$ Yivoviat $\alpha v \tau \dot{\mu} \mu \alpha \sigma$.

$\kappa \alpha \tau \dot{\sigma} \sigma \tau \eta \mu \alpha$ ，ò $\tau \alpha \nu$ avtó हival $\gamma \varepsilon \mu$
 $\beta \rho \varepsilon \theta \dot{\eta} \kappa \alpha \mu \varepsilon \mu \pi \rho о \sigma \tau \dot{\alpha} \sigma \tau \alpha$ robot $-\sigma \alpha \lambda \alpha$

 коv，к $\lambda \pi$ ．）$\dot{\eta} \gamma \alpha \lambda \alpha \kappa т о к о \mu เ к \alpha \dot{\alpha} \pi \rho о$ ӧvтс
 $\sigma ' \varepsilon \vee v \alpha \sigma \tau \varepsilon \gamma \alpha v o \dot{c} \pi \varepsilon \rho i \pi \tau \varepsilon \rho \circ \pi$ тоט $\pi \rho \circ \sigma$ $\tau \varepsilon \dot{\varepsilon} \varepsilon!~ \kappa \alpha เ ~ \delta \iota \alpha \tau \eta \rho \varepsilon i ~ \alpha \mu o ̇ \lambda u v \tau \alpha ~ \tau \alpha ~ \tau \rho o ̀ \varphi!~$ E $\dot{v} v \theta \dot{\varepsilon} \lambda \varepsilon \tau \varepsilon v \alpha \alpha \gamma \circ \rho \dot{\alpha} \sigma \varepsilon \tau \varepsilon \sigma \alpha \lambda \dot{\alpha} \mu \mathrm{t}, \varepsilon \pi \mathrm{L}$
 रouv $\mu \pi \rho о \sigma \tau \dot{\alpha} \alpha \pi \dot{\alpha}$ то $\pi \rho о \sigma \tau \alpha \tau \varepsilon \cup \pi$ $\pi \alpha \rho \alpha \dot{\theta}$ טро тои $\pi \varepsilon \rho เ \pi \tau \varepsilon \dot{\rho} \circ$ ，то $\varepsilon i \delta \circ \varsigma$ ，
 $\theta \dot{\varepsilon} \lambda \varepsilon \tau \varepsilon$ ，то $\pi \dot{\alpha} \chi \circ \varsigma \kappa \alpha \dot{\alpha} \theta \varepsilon \varphi \varepsilon ์ \tau \alpha \varsigma ~(\mu \pi о \rho \varepsilon i \tau \varepsilon$ $\dot{\varepsilon} \chi \varepsilon \tau \varepsilon \varphi \dot{\varepsilon} \tau \varepsilon \varsigma \pi \dot{\alpha} \chi \circ \cup \varsigma ~ 0.8,1.5 \dot{\eta} 2.5 \chi^{1 \lambda}$ $\sigma \tau \dot{\omega} v) \kappa \lambda \pi$ ．$\Sigma \tau \eta v \varepsilon \pi \iota \lambda \circ \gamma \dot{\eta} \theta \alpha \sigma \alpha \varsigma \beta \circ \eta \in$ $\sigma \varepsilon \iota ~ \mu \iota \alpha$ бטv $\theta \varepsilon \tau \iota \kappa \grave{j} \gamma \cup v \alpha \iota \kappa \varepsilon i \alpha ~ \varphi \omega v \eta \dot{\eta} \pi$ $\kappa \alpha \theta$ o $\eta \eta \gamma \varepsilon i \tau \alpha \iota ~ \alpha \pi$ ó $\tau 0 v$ computer，ка θ
 $\gamma \varepsilon \lambda i \alpha \sigma \alpha \varsigma$.

Мо் $\lambda \iota \varsigma$ о $о к \lambda \eta \rho \dot{\omega} \sigma \varepsilon \tau \varepsilon \tau \eta \nu \pi \alpha \rho \alpha \gamma \gamma \varepsilon \lambda$ $\sigma \tau \eta \nu$ oӨóv $\eta \quad \pi \alpha \rho o v \sigma \iota \alpha \dot{\zeta} \zeta \tau \alpha \iota \quad \eta \quad \tau \longmapsto$ Σ＇$\alpha \cup \tau$ ȯ то $\sigma \eta \mu \varepsilon i o, \mu \pi о \rho \varepsilon i \tau \varepsilon \vee \alpha$ то $\xi \alpha$ $\sigma \kappa \varepsilon \varphi \tau \varepsilon i \tau \varepsilon$ ．Av $\delta \varepsilon$ ө $\dot{\varepsilon} \lambda \varepsilon \tau \varepsilon v \alpha \mu \varepsilon \tau \alpha \beta \alpha \dot{\lambda} \varepsilon \tau \varepsilon$ $v \alpha \alpha \kappa \nu \rho \dot{\sigma} \sigma \tau \varepsilon \tau \eta \nu \pi \alpha \rho \alpha \gamma \gamma \varepsilon \lambda i \alpha, \pi \alpha \tau \dot{\alpha} \tau \varepsilon$ $\pi \lambda \dot{\eta} \kappa \tau \rho \circ$ « $\varepsilon v \tau о \lambda \dot{\eta} »$ ．Töтє，то $\rho о \mu \pi$ о่ $\sigma \alpha \lambda \alpha \mu о \pi о เ \eta \tau \eta \dot{ }, \delta o \cup \lambda \varepsilon v ̇ o v \tau \alpha \varsigma ~ \mu \varepsilon ̇ \sigma \alpha \sigma$ $\alpha \pi о \sigma \tau \varepsilon i \rho \omega \mu \dot{\varepsilon} v o \quad \pi \varepsilon \rho \iota \beta \dot{\alpha} \lambda \lambda \frac{1}{}$ тоט，кóß
 $\lambda \varepsilon \gamma \mu \varepsilon \dot{\varepsilon} v o \quad \pi \rho \circ$ öo $\nu \mu \varepsilon ̇ \sigma \alpha \quad \sigma \varepsilon \quad 30$ ह̇ $\omega \zeta$ $\delta \varepsilon \cup \tau \varepsilon \rho o \dot{\lambda} \lambda \pi \tau \alpha$ ．$\Sigma \tau \eta{ }^{\tau} \sigma v \varepsilon \dot{\varepsilon} \chi \varepsilon i \alpha, \sigma \alpha \varsigma$ $\pi \alpha \rho \alpha \delta i \delta \varepsilon \iota \mu \varepsilon \dot{\varepsilon} \sigma \alpha \sigma \varepsilon \sigma \alpha \kappa о \cup \lambda \dot{\alpha} \kappa \iota, \pi \varepsilon \rho v \oplus ் \vee \tau$

a入入à．．．

СОПРА区：

Camputer Line＂．

Kevtpiko：
Aıov．Apsonayitou 3.11742 AOHNA－TnA： $9218884-9225227 \cdot$ TعAع६： 223708
Yпоката́oтпна Пätpac：Mal（wvoc 94.26221 ПATPA－Tnd：（061） 270239
${ }^{`} \mathrm{O} \mu \omega \varsigma, \tau \alpha$ Ө $\alpha \dot{u} \mu \alpha \tau \alpha \delta \varepsilon v \tau \varepsilon \lambda \varepsilon 1 \omega ் v o u v \varepsilon \delta \dot{\omega}$.
 $\dot{\varepsilon} \chi \varepsilon \iota ~ \tau о \pi о \theta \varepsilon \tau \eta \theta \varepsilon i$ то $\rho о \mu \pi$ о่ $-\pi \omega \lambda \eta \tau \eta \dot{\varsigma}$

 $\nu \tau \alpha \iota \sigma \tau \eta \beta \iota \mu \eta \chi \alpha v i \alpha, \mu \varepsilon \tau \eta \delta \iota \alpha \varphi о \rho \dot{\alpha}$ ó $\tau \iota$

＇Обо кı αv फaivetal $\alpha \pi i \sigma \tau \varepsilon \cup \tau о$ ，то ронло̇т عivaı $\pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \imath \sigma \mu \varepsilon ் v o \quad \dot{\varepsilon} \tau \sigma \iota$ $\dot{\omega} \sigma \tau \varepsilon v \alpha \mu \pi о \rho \varepsilon i \quad v \alpha \xi \varepsilon \chi \omega \rho i \zeta \varepsilon \iota \mu \varepsilon$ $\sigma \iota \gamma o u \rho \iota \alpha$ $\tau \alpha \kappa \alpha \lambda \dot{\alpha} \alpha \pi$ ȯ $\tau \alpha \kappa \lambda о \dot{\beta} \beta \imath \alpha \alpha \cup \gamma \dot{\alpha}$ ．О $\tau \rho о \dot{\pi} о \varsigma$

 $\tau 0 \alpha v \gamma \dot{\omega} \dot{\omega} \sigma \tau \varepsilon$ v α үivouv $\alpha v \tau \iota \lambda \eta \pi \tau \varepsilon \dot{\varsigma} \alpha \pi$ ó $\tau \alpha$

 $\mu \alpha \varsigma, ~ \alpha v ~ t o ~ \alpha u \gamma o ̇ ~ \varepsilon i v \alpha ı ~ \chi \alpha \lambda \alpha \sigma \mu \dot{\varepsilon} v o$ ，oı

KI AAAOI AYTOMATILMOI．．．

Н $\mu \varepsilon \tau \alpha \varphi о \rho \dot{\alpha} \chi \rho \eta \mu \dot{\alpha} \tau \omega v, \delta \iota \alpha \tau \alpha \kappa \tau \iota \kappa \dot{\omega} v$, $\tau \sigma \varepsilon \kappa, \gamma \rho \alpha \pi \tau \dot{\omega} \nu \mu \eta v \nu \mu \dot{\alpha} \tau \omega v \kappa \lambda \pi$ ．$\alpha v \dot{\alpha} \mu \varepsilon \sigma \alpha$ $\sigma \tau \alpha \tau \alpha \mu \varepsilon i \alpha$ тоט Seiru $\kappa \alpha \iota \sigma \tau о \delta \omega \mu \dot{\alpha} \tau \iota$ $\varepsilon \lambda \dot{\varepsilon} \gamma \chi \circ$ ，γ iveтаı α ло่ то $\alpha \cup \tau о \mu \alpha \tau о \pi о เ \eta-~$ $\mu \varepsilon \dot{v}$ o $\sigma \dot{\sigma} \sigma \tau \eta \mu \alpha$ Telelift．П $\dot{\alpha} \omega \omega \sigma \varepsilon \mu \iota \alpha \rho \dot{\alpha} \gamma \alpha$ ，

 $\tau \alpha \chi \cup \dot{\tau} \alpha \tau \alpha$ к $\alpha \iota \alpha \theta \dot{\circ} \rho \cup \beta \alpha$ пп $\delta \iota \alpha \delta \rho о \mu \eta \dot{~}$

 $\tau \dot{\varepsilon} \tau о \iota \varepsilon \varsigma \gamma \rho \alpha \mu \mu \varepsilon ் \varsigma \mu \varepsilon \tau \alpha \varphi о \rho \alpha \dot{\varsigma} \mu \eta \nu \cup \mu \dot{\alpha} \tau \omega v$ ．

To $\sigma \alpha \lambda$ òvı tou Seiru，ε ivaı $\delta i \pi \lambda \alpha$ σ тo $\chi \dot{\omega} \rho о$ тоט ка兀 $\alpha \sigma \tau \dot{\eta} \mu \alpha \tau \circ \varsigma$ ．Пعрь $\lambda \alpha \mu \beta \dot{\alpha} v \varepsilon \iota$

 $\gamma \omega v \iota \dot{\alpha} \gamma \iota \alpha \tau \alpha \pi \alpha \iota \delta \dot{\alpha} . \Sigma \tau \eta \nu \pi \rho \dot{\omega} \tau \eta, \mu \pi о \rho \varepsilon i$ $\kappa \alpha v \varepsilon i \varsigma ̧ v \alpha \theta \alpha \cup \mu \dot{\alpha} \sigma \varepsilon \iota ~ \kappa \alpha \tau \alpha v \alpha \lambda \omega \tau \iota \kappa \dot{\alpha} \alpha \gamma \alpha \theta \dot{\alpha}$
 $\pi \iota \kappa-\alpha \pi \mu \varepsilon \kappa \varepsilon \rho \alpha \mu \iota \kappa \dot{\circ} \tau \alpha \mu \pi \lambda \dot{o}, \quad \varepsilon v \dot{\omega} \quad \sigma \tau \eta$ $\delta \varepsilon \dot{\tau} \tau \varepsilon \rho \eta \mu \pi о \rho \varepsilon i$ v $\alpha \pi \alpha i \zeta \varepsilon \iota ~ \varepsilon \pi \iota \mu о \rho \varphi \omega \tau \iota \kappa \dot{\alpha}$
 бט $\mu \mu \varepsilon \tau о \chi \eta \dot{\eta}$ тоv $\pi \alpha i к \tau \eta$ ．

 $\pi \varepsilon \rho \dot{\alpha} \sigma \varepsilon \iota \alpha \pi \dot{\text { o }}$ то $\tau \alpha \mu \varepsilon i o$ ．Eкєi，v $\tau \dot{\alpha} \rho \chi \varepsilon \iota \varepsilon \dot{\varepsilon} v \alpha$ $\varepsilon \xi \varepsilon \lambda \iota \gamma \mu \varepsilon \dot{v}$ o Point of Sales Terminal
 $v \omega v i \alpha \mu \varepsilon$ тоv кєvтрıко́ vлодоүıбтท்．O
 $\kappa \alpha \rho о \tau \sigma \dot{\alpha} \kappa เ ~ \tau о \cup$ о $\pi \varepsilon \lambda \dot{\alpha} \tau \eta \varsigma ~ \mu \dot{\varepsilon} \sigma \alpha \alpha$ оं то $\dot{\alpha} v o t \gamma \mu \alpha$ हvȯs $\alpha v \imath \chi v \varepsilon \cup \tau \eta \dot{\eta}, \gamma ı \alpha$ v $\alpha \delta \iota \alpha \beta \alpha-$ бто⿱亠乂，ot $\mu \alpha \gamma \vee \eta \tau ı \kappa \varepsilon ̇ \varsigma ~ \tau \alpha ı v i \varepsilon \varsigma ~ \pi o v ~ \dot{\varepsilon} \chi o u v$ $\pi \dot{\alpha} v \omega$ тous．To P．O．S $\sigma \tau \dot{\varepsilon} \lambda v \varepsilon \varepsilon \quad \sigma \tau 0 v$

 $\pi \varepsilon \lambda \dot{\alpha} \tau \eta \varsigma \kappa \alpha \iota ~ \tau \cup \pi \omega ் v o v \tau \alpha \iota \quad \sigma \tau \eta \nu \alpha \pi o ̇ \delta \varepsilon \iota \xi \eta$ π ои $\theta \alpha$ то⿱ $\pi \alpha \rho \alpha \delta$ o $\theta \varepsilon$ i．
 $\varepsilon \xi \cup \pi \eta \rho \dot{\varepsilon} \tau \eta \sigma \eta \varsigma, \dot{\eta} \lambda \dot{\alpha} \theta \eta$ ．$\Sigma \tau \eta$ бuv $\chi \chi \varepsilon ⿺ \alpha, o$ $\tau \alpha \mu i \alpha \varsigma \quad \pi \alpha i \rho v \varepsilon \iota \quad \chi \rho \dot{\eta} \mu \alpha \tau \alpha \dot{\eta} \tau \sigma \varepsilon \kappa, \tau \alpha$ $\kappa \alpha \tau \alpha \gamma \rho \dot{\varphi} \varphi \varepsilon \iota ~ \sigma \tau о ~ \tau \varepsilon \rho \mu \alpha \tau ı к о ̇ ~ \kappa \alpha \iota ~ \tau \alpha ~ \rho \varepsilon ̇ \sigma \tau \alpha$ $\beta \gamma \alpha i v o u v \alpha \pi$ о̇ то $\tau \alpha \mu \varepsilon i o ~ \alpha \cup \tau о ̇ \mu \alpha \tau \alpha$ ．

 $\varepsilon \pi ı \tau \varepsilon u \dot{\gamma} \mu \alpha \tau \alpha$ ．＇Eva $\alpha \pi$ ó $\alpha v \tau \dot{\alpha}, ~ \varepsilon i v \alpha ı ~ \tau о ~$

 pi\＆c． $\mathrm{M} \eta \beta \imath \alpha \sigma \tau \varepsilon i \tau \varepsilon v \alpha$ $\sigma \kappa \varepsilon \varphi \tau \varepsilon i \tau \varepsilon$ ó $\tau \iota \alpha \cup \tau$ ó
 $\varphi \omega \tau о к \cup \psi \varepsilon \dot{\lambda} \lambda \varepsilon$ тои родоүıой，вivaı ката－

 $\dot{\alpha} \mu о \rho \varphi \eta$ бเ $\lambda \iota \kappa o ̉ v \eta, \lambda o \dot{\gamma} \omega \tau \eta \varsigma \mu \eta \kappa \rho \cup \sigma \tau \alpha \lambda$－ $\lambda เ \kappa \eta ் \varsigma ~ \tau \eta \varsigma ~ \delta о \mu \ddot{\eta} \varsigma$ ，＂$\pi \lambda \dot{\alpha} \theta \varepsilon \tau \alpha เ$ » $\sigma \varepsilon$ олоเо－ $\delta \dot{\eta} \pi о \tau \varepsilon \sigma \chi \dot{\eta} \mu \alpha$ ．

To $\rho о \mu \pi \dot{\tau} \tau$ S．Stacker，$\varepsilon v \dot{\omega} \mu \varepsilon \tau \alpha \varphi \dot{\varepsilon} \rho \varepsilon \iota \dot{\varepsilon} v \alpha$ container．

 то $\sigma \dot{\sigma} \sigma \tau \eta \mu \alpha$ ழо́ $\rho \tau \iota \sigma \eta \varsigma \tau \omega \nu \mu \pi \alpha \tau \alpha \rho t \dot{\omega} v$ $\tau \alpha \varphi \dot{\omega} \tau \alpha \alpha \sigma \varphi \alpha \lambda \varepsilon i \alpha \varsigma$ тоט ка $\alpha \alpha \sigma \tau \eta \dot{\mu} \alpha \tau$

 тоט Sivel $\tau \eta$ סuva兀ȯ $\eta \tau \alpha$ $\alpha v \alpha \kappa и ̆ к \lambda \omega \sigma$ $\tau \varepsilon \chi \vee \eta \tau \circ \cup \dot{ } \varphi \omega \tau \iota \sigma \mu \circ$ ．$\Delta \eta \lambda \alpha \delta \dot{\eta}, \theta \varepsilon \omega \rho \eta \tau \iota$ то $\sigma ט ̇ \sigma \tau \eta \mu \alpha \mu \pi о \rho \varepsilon i \quad v \alpha$ єк $\mu \varepsilon \tau \alpha \lambda \lambda \varepsilon$ ย̇є
 $\pi \alpha \rho \dot{\alpha} \gamma \varepsilon ı$ ．
－E $\chi \circ v \tau \alpha \varsigma \dot{\eta} \delta \eta \pi \varepsilon \rho \dot{\alpha} \sigma \varepsilon \iota ~ \pi о \lambda \lambda \dot{\varepsilon} \varsigma \dot{\omega} \rho \varepsilon \varsigma \sigma$ Seiru，$\pi \eta \dot{\rho} \alpha \mu \varepsilon$ то аขтокіvŋто́ $\mu \alpha \varsigma ~ к$ $\kappa \alpha \tau \varepsilon \cup \theta \nu v \theta \dot{\eta} \kappa \alpha \mu \varepsilon \quad \pi \rho \circ \varsigma \quad \tau \eta \nu \dot{\varepsilon} \xi \circ \delta о$. $\mu \pi \dot{\alpha} \rho \alpha$ ทं $\tau \alpha v \kappa \alpha \tau \varepsilon \beta \alpha \sigma \mu \dot{\varepsilon} v \eta$ к $\alpha \iota$ то $\rho о \mu \pi \dot{~}$ $\theta \cup \rho \omega \rho \dot{\rho} \varsigma \mu \varsigma \varsigma \pi \alpha \rho \alpha \kappa \dot{\alpha} \lambda \varepsilon \sigma \varepsilon v \alpha \beta \dot{\alpha} \lambda \frac{0}{} \mu \mu \varepsilon$ $\mu \alpha \gamma \vee \eta \tau ו \kappa \eta \dot{\kappa} \kappa \dot{\alpha} \rho \tau \alpha$ тоט вi $\chi \alpha \mu \varepsilon \pi \rho о \mu \eta \theta \varepsilon$ $\tau \varepsilon i$ ó $\tau \alpha \nu \mu \pi \eta \dot{\kappa} \alpha \mu \varepsilon$ ，$\sigma \tau \eta \nu \varepsilon เ \delta \iota \kappa \eta \dot{\sigma} \sigma \iota \sigma \mu$
 $\varepsilon \xi ̆ \dot{\varepsilon} \tau \alpha \sigma \varepsilon \tau \eta \nu \kappa \dot{\alpha} \rho \tau \alpha \kappa \alpha \iota \varepsilon \pi \iota \kappa о \iota \nu \oplus ் \vee \eta \sigma \varepsilon$ тov computer $\tau 0 \cup \kappa \alpha \tau \alpha \sigma \tau \eta \mu \alpha \tau \circ \varsigma, \chi \rho \eta$
 $\varepsilon \pi \iota к о \iota v \omega v i \alpha \varsigma, \pi \rho о к \varepsilon \iota \mu \dot{\varepsilon} v o v$ v $\alpha \beta \varepsilon \beta \alpha \iota \omega \in$ $\dot{\text { ò } \tau ~ о ~ к \dot{\alpha} \tau о \chi о \varsigma ~} \tau \eta \varsigma \kappa \dot{\alpha} \rho \tau \alpha \varsigma ~ \dot{\varepsilon} \chi \varepsilon \iota ~ \pi \lambda \eta \rho \dot{\omega} \subset$ бто $\alpha \mu \mu$ io тo $\chi \rho$ ȯvo $\chi \rho \eta ं \sigma \eta \varsigma$ tou Parkir Мо் $\lambda \iota \varsigma \beta \varepsilon \beta \alpha \iota \dot{\omega} \theta \eta \kappa \varepsilon \dot{\circ} \tau \iota \dot{\partial} \lambda \alpha \dot{\eta} \tau \alpha v \varepsilon v \tau \dot{\alpha} \xi$ $\eta \mu \pi \dot{\alpha} \rho \alpha \dot{\alpha} v o \iota \xi \varepsilon$ ．To роило் $\tau \alpha \varsigma \varepsilon \varepsilon \chi \alpha$, $\sigma \tau \eta \sigma \varepsilon \gamma 1 \alpha \tau \eta \nu \pi \rho о \tau і \mu \eta \sigma \dot{\eta} \mu \alpha \varsigma$ бто Sei $\kappa \alpha \iota \mu \alpha \varsigma \kappa \dot{\lambda} \lambda \varepsilon \sigma \varepsilon v \alpha$ то $\varepsilon \pi \iota \sigma \kappa \varepsilon \varphi \theta$ ои̇ $\mu \varepsilon \xi \alpha \downarrow$

ЕПIムОГОГ

$\Pi \dot{\omega} \varsigma \dot{\rho} \mu \omega \varsigma \alpha v \tau \iota \mu \varepsilon \tau \omega \pi i \zeta \varepsilon \iota$ o $\mathrm{I} \dot{\alpha} \pi \omega v$ $\kappa \alpha \tau \alpha v \alpha \lambda \omega \tau \eta \dot{\varsigma} \alpha \cup \tau \eta$ тך $\beta i \alpha ı \eta$ हוбß० $\nu \pi \varepsilon \rho \pi \rho \circ \eta \gamma \mu \varepsilon \dot{v} \omega v \tau \varepsilon \chi$ vo $\tau \omega v \sigma^{\prime} \dot{\varepsilon} v \alpha$ ко $\mu \mu \dot{\alpha} \tau \iota \tau \eta \varsigma \kappa \alpha \theta \eta \mu \varepsilon \rho \iota v \eta \varsigma_{\iota} \tau$
 $\dot{\varepsilon} \pi \alpha \iota \zeta \varepsilon \eta \alpha \nu \theta \rho \dot{\omega} \pi \iota \nu \eta$ є $\pi \alpha \varphi \eta \dot{;}$ ；
Ot v $\pi \varepsilon \dot{\theta} \theta$ vvot tou Seiru $\mu \alpha \varsigma \delta \iota \alpha \beta \varepsilon \beta \alpha i$ $\sigma \alpha v \dot{\circ} \tau \iota$ ，o七 $\kappa \alpha \tau \alpha v \alpha \lambda \omega \tau \dot{\varepsilon} \zeta$（ $\tau \circ \cup \lambda \dot{\alpha} \chi เ \sigma \tau 0 v$ İ $\pi \omega \nu \varepsilon \varsigma)$ عivaı $\tau \rho о \mu \varepsilon \rho \dot{\alpha}$ ठ $\delta \kappa \tau \iota \kappa о i$
 $\Sigma \tau \eta \vee \alpha \rho \chi \eta \dot{\eta} \pi \eta \gamma \alpha i v o u v \sigma \tau 0$ Seiru，$\gamma \iota \alpha \tau i$
 $\dot{\circ} \mu \omega \varsigma, \varepsilon \kappa \tau \tau \mu \circ u ் v \tau \eta \nu \pi \circ$ ȯ $\tau \eta \tau \alpha \tau \eta \varsigma \varepsilon \xi \cup \pi$
 $\pi о ı \eta \mu \dot{\varepsilon} v o$ Supermarket．
To к $\alpha \tau \dot{\alpha} \sigma \tau \eta \mu \alpha \pi о \cup \pi \varepsilon \rho \iota \gamma \rho \dot{\alpha} \psi \alpha \mu \varepsilon$ ，$\dot{\varepsilon}$, $\chi \alpha \rho \alpha \kappa \tau \eta \dot{\rho} \alpha \pi \varepsilon \iota \rho \alpha \mu \alpha \tau \iota \kappa o ̇$. ＇Ү $\sigma \tau \varepsilon \rho \alpha \dot{\circ} \mu$ $\alpha \pi \dot{~} \tau \alpha \pi \rho \dot{\omega} \tau \alpha \pi$ тодن́ $\varepsilon v \theta \alpha \rho \rho \cup v \tau \iota \kappa \alpha \dot{\alpha} \sigma \cup \mu \tau$ $\rho \dot{\alpha} \sigma \mu \alpha \tau \alpha$ ，$\dot{\eta} \delta \eta \quad \pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau i \zeta \varepsilon \tau \alpha \iota ~ \mu$ одо́к $\lambda \eta \rho \eta \alpha \lambda \cup \sigma i \delta \alpha \alpha \pi$ Se Seiru Superma kets．
$A \xi i \zeta \varepsilon \iota \alpha \kappa o ̈ \mu \eta v \alpha \alpha v \alpha \varphi \varepsilon \rho \theta \varepsilon i, \dot{\text { ò }} \tau \iota \pi 0 \lambda \lambda$ $\varepsilon v \delta \iota \alpha \varphi \varepsilon \rho_{\rho} \nu \tau \alpha \iota \gamma \iota \alpha \tau \eta \nu \varepsilon \iota \sigma \alpha \gamma \omega \gamma \dot{\eta} \mu \varepsilon \rho \iota \kappa$ $\alpha \pi \dot{\text { ó } \tau \iota \varsigma ~ \kappa \alpha เ v o \tau о \mu і \varepsilon \varsigma ~ \tau о и ~ S e i r u ~ к \alpha ı ~} \sigma \tau \alpha \delta t$ тоטৎ к $\alpha \tau \alpha \sigma \tau \eta \dot{\mu} \mu \tau \alpha$ ．М $\eta v \varepsilon \kappa \pi \lambda \alpha \gamma \varepsilon i \tau \varepsilon \lambda \rho$
 Supermarket $\tau \eta \varsigma ~ \gamma \varepsilon ו \tau o v i \alpha ́ \varsigma ~ \sigma \alpha \varsigma, ~ \sigma ~$ $\kappa \alpha \lambda \eta \mu \varepsilon \rho i \sigma \varepsilon \iota \dot{\varepsilon} v \alpha$ ро $\boldsymbol{\kappa}$ о̇т．

МЕ ТН ГУГХРОNН TEXNOАОГІКН ANTIАНЧH EHOYDEE HAEKTPONIKSN YIIOへOTIETSN

ГYNEPГAZOMENA EPГAธTHPIA EAEYOEPSN इПOYロЯN

EPГA乏THPIA EAEYOEPQN $\Sigma \Pi O Y \triangle \Omega N$
AOHNA－ПEIPAIA
«ЕПOY $\triangle E \Sigma$ YШH＾OY EПIПEAOY»

TOMEA乏 TAXYPPYOM

$$
\begin{aligned}
& \text { TaxúppuӨ } \mu \eta \text { єпแцо́ } \rho ф \omega \sigma \eta
\end{aligned}
$$

YIa ФOITHTE乏，EПIइTHMONE乏，EПIXEIPHMATIE乏，इTEAEXH ERIXEIPH乏ERN

> ASSEMBLY ($30 \dot{\omega} \rho \varepsilon \varsigma$).
> APXEIA (25 $\omega \rho \varepsilon \varsigma) ~ \bullet ~ П I N A K E \Sigma ~(25 ~ \omega ́ \rho \varepsilon \varsigma) ~ \cdot ~ Г Р А Ф I K E \Sigma ~ П A P A \Sigma T A \Sigma E I \Sigma ~(25 ~ \omega ́ \rho \varepsilon \varsigma) ~ \cdot ~ Г E N I K H ~ \wedge O T I \Sigma T I K H ~$ ($35 \omega \dot{\omega} \varepsilon \varsigma$) • WORD PROCESSING ($20 \omega \dot{\omega}$
> ^EITOYPГIKA $\Sigma Y \Sigma T H M A T A ~(25 ~ \omega ́ \rho \varepsilon \varsigma) ~ \cdot ~ D A T A ~ E N T R Y ~(X E I P I \Sigma M O \Sigma ~ H / Y) ~(12 ~ \omega ́ \rho \varepsilon \varsigma) ~ \cdot ~ \Psi H Ф I A K A ~$ H^EKTPONIKA (60 $\omega \rho \varepsilon \varsigma)$.

1．ГАیミ£E ПРОГРАММАТIミMOY
2．$X P H \Sigma H$
ПРОГРАММАТЯN
3．AヘAA
ПРОГРАММАТА О тоцદ́ac TAXYPPYӨM

－MaӨaivєтє бшотá каı үрர́үора $\sigma \varepsilon$ үкроит $\mu \varepsilon ́ х \rho!~ 5 a ́ т о \mu а ~$

－Пробарцо́ろєтє то про́үрациа отıя аváүкєя бая COMPUTER CENTER каı HAEKTPONIKO EPTA乏THPI）

1．EMM．MПENAKH 32

2．BAE．K $\Omega N / N O Y 33$－3．AT．K $\Omega N / N O Y 11$ \＆TEAMA （ $\Delta \iota \delta$ кктท́pıa ПЕІРАIA）

4．AKA $\triangle H M I A \Sigma 98$
 （AiӨoưa $\Delta \mathrm{I} \lambda \lambda \varepsilon \xi \varepsilon \omega \mathrm{V})$

THA．KENTPO 3645111，2，3

Emouठt́s $\mu \varepsilon$ aAAп入oypaфía
yıa kd́日e EAAqva

BASIC ME A＾ヘHへOГРАФIA

yIa MAOHTE－ФOITHTE－EПİTHMONE KaI KAOE ENAIAФEPOMENO ПAEONEKTHMATA TOY ГYミTHMATO乏

EMİHE

 ПРОГФЕРОNТАІ ЕПІ $Н \Sigma ~ Т А ~ П Р О Г Р А М М А Т А ~$ \qquad

ГPAMMATEIA：$\Sigma O \lambda \omega \mu$ Oú 54 • AӨHNA 10682 • Tin $\lambda .3645114$ • MHXANOГPAФIKO KENTPO：E μ ．Mrevákn 32

$$
\begin{aligned}
& \text { ZHTEI乏TE ENTYПA KAI ПPO乏』ПIKH £YNENTEY三H }
\end{aligned}
$$

ocorona data systems, inc.

BARCOIISIOIIII

M

 олтıкоакоибтıкळ゙v $\delta \varepsilon \delta о \mu \dot{\varepsilon} v \omega v \sigma \varepsilon \mu \varepsilon \gamma \dot{\alpha} \lambda \varepsilon \varsigma$
 т η v $\alpha \pi \varepsilon \iota к o ̇ v i \sigma \eta, ~ \varepsilon i v a ı ~ \eta ~ \chi \rho \eta \grave{\sigma} \eta \mu \eta \chi \alpha \nu \eta$－

$\Sigma \eta \dot{\eta} \mu \rho \alpha, \tau \alpha$ отоטסаเȯтєр $\mu \dot{\varepsilon} \sigma \alpha \pi \alpha \rho \alpha-$
 vaı $\tau \alpha$ Video Tape Recorders（ γ ı α єıкóv α
 каı graphics）．Kaı $\tau \alpha \delta \dot{\delta} о \mu \dot{\varepsilon} \sigma \alpha, \pi \alpha \rho \dot{\varepsilon} \chi o u v$

 $\tau \eta \lambda \varepsilon \dot{\delta} \rho a \sigma \eta$ ŋ̀ monitor．H $\tau \sigma \cup \rho \dot{\eta} \mu \varepsilon \gamma \varepsilon \dot{\varepsilon}-$

 $\mu \varepsilon \gamma \dot{\alpha} \lambda \eta$ oӨóv $\eta, \chi \omega \rho i \varsigma$ va $\chi \dot{\alpha v \varepsilon \tau \alpha \iota ~} \eta$
 тŋऽ $\pi \lambda \eta \rho о \varphi о \rho i \alpha \varsigma, ~ \delta \varepsilon v$ вivaı каӨӧдоv

 $\lambda \dot{\jmath} \sigma \varepsilon ı \zeta$ ото $\pi \alpha \rho \alpha \pi \dot{\alpha} v \omega \pi \rho \dot{\beta} \beta \lambda \eta \mu \alpha$, вivaı η $\beta \varepsilon \lambda \gamma$ ıкท Barco Electronics，η отоі α вivaı $\dot{\eta} \delta \eta \gamma v \omega \sigma \tau \eta \dot{\eta} \gamma \omega \tau \alpha \varepsilon \pi \alpha \gamma \gamma \varepsilon \lambda \mu \alpha \tau \iota \kappa \alpha \dot{\alpha}$ moni－ tors каı тı̧ $\tau \eta \lambda \varepsilon о \rho \dot{\sigma} \sigma \varepsilon 1 \varsigma ~ \pi о и ~ к \alpha \tau \alpha \sigma \kappa \varepsilon \cup \dot{\alpha}-$

 β होض̆ऽ $\sigma \eta \mu \dot{\alpha} \tau \omega v$ video（video－projectors）， to Barcovision II ккı to Barcodata 3.

 $\pi \varepsilon \rho i \pi o v \tau \alpha 15,6 \mathrm{KHz}, \varepsilon v \omega ் \sigma \tau \alpha$ monitors

 عivaı $\alpha \pi \alpha \rho \alpha i \tau \eta \tau \eta$ $\sigma \varepsilon$ бvбтทั $\mu \alpha \tau$ CAD／ CAE ӧтоv $\alpha \pi \alpha \iota \tau$ ойт $\alpha 1$ graphics $\mu \varepsilon \kappa \alpha \lambda \eta$ ク

 Barco，to Barcovision II $\dot{\varepsilon} \varepsilon \iota$ бטरvȯt $\eta \tau \alpha$ орı̧̧ȯvtiac odap $\omega \sigma \eta$ § $15-17 \mathrm{KHz}$ ．Avtó
 $\kappa \dot{\alpha} \mu \varepsilon \rho \varepsilon \varsigma$ video，$\mu \varepsilon$ video tape recorders，$\mu \varepsilon$

 $\tau \alpha \iota ~ \sigma \tau \alpha \quad \pi \alpha \rho \alpha \pi \dot{\alpha} v \omega$ ópıa．Avti $\theta \varepsilon \tau \alpha$ ，то $\dot{\alpha} \lambda \lambda \lambda_{0}$ бüø $\tau \eta \mu$ ，тo Barcodata 3 ，$\varepsilon \pi \iota \tau \rho \varepsilon ̇ \pi \varepsilon \iota$

 oņ $\tau \eta \varsigma$ عıкóvas $\mu \varepsilon ̇ \chi \rho ı$ к人ı 32 KHz ．
 ह̀va Barcodata 3 тои ßpiккетаı бто $\xi \varepsilon v o \delta o \chi \varepsilon i o$ Intercontinental ккı $\chi \rho \eta \sigma$ цио－
 $\pi о \nu \pi \rho \alpha \gamma \mu \alpha \tau о \pi о เ о ் ้ \tau \alpha \iota ~ \varepsilon к \varepsilon і$.

ПЕРІГРАФН－АЕІТОҮРГІА

Oı $\pi \rho \circ \beta$ о ε вi¢ Earcovision II каı Bar－
 $\mu \circ v \dot{\alpha} \delta \alpha, \eta$ олоi $\alpha \pi \varepsilon \rho t \varepsilon \dot{\varepsilon} \varepsilon \iota \tau \iota \varsigma \lambda \nu \chi v i \varepsilon \varsigma \kappa \alpha \iota$
 $\mu \alpha \tau \alpha, \tau \iota \varsigma \varepsilon \iota \sigma o \dot{\delta} \circ \cup \varsigma \varsigma \tau \omega v$ б $\eta \mu \alpha \dot{\tau} \omega \nu \mathrm{\kappa c}$

 $\dot{\eta} \alpha \pi$ ó RGB TTL Composite．T $\alpha \sigma$ $\tau \eta \varsigma ~ \pi \rho \dot{\omega} \tau \eta \varsigma ~ к \alpha \tau \eta \gamma о \rho i \alpha \varsigma, \pi \rho о \dot{\varepsilon} \rho$ ， $\alpha \pi o \dot{c} \pi \eta \gamma \varepsilon \dot{\varepsilon} \zeta$ video $\varepsilon v \dot{\omega} \tau \eta \varsigma \delta \varepsilon \cup ் \tau \varepsilon \rho \eta$

 $\mu \dot{\varepsilon} \rho \circ \varsigma \tau \eta \varsigma \kappa \dot{\alpha} \theta \varepsilon \mu \circ v \dot{\alpha} \delta \alpha \varsigma$ ．H $\varepsilon i \sigma o \delta o \varsigma$ $\sigma \eta \dot{\mu} \alpha \tau \alpha$ video，عivaı тütov BNC（ $\Gamma i \alpha \tau \alpha \alpha v \alpha \lambda 0 \gamma เ \kappa \alpha \dot{\sigma} \emptyset \dot{\eta} \mu \alpha \alpha$ RGB $v \pi \dot{\alpha}$ $\tau \dot{\varepsilon} \sigma \sigma \varepsilon \rho ı \varsigma ~ \varepsilon i \sigma o \delta o t . ~ O ı ~ \tau \rho \varepsilon ı \varsigma ~ \delta \dot{\varepsilon} \chi о v \tau \alpha$ $\pi \alpha \lambda \mu \circ \stackrel{\iota}{ }$ R（ко̇ккเvo），G（ $\pi \rho \dot{\alpha} \sigma \iota v o)$ （ $\mu \pi \lambda \varepsilon) \varepsilon v \dot{\omega} \eta \tau \dot{\varepsilon} \tau \alpha \rho \tau \eta \delta \dot{\varepsilon} \chi \varepsilon \tau \alpha \iota$ то้
 TTL Composite，$\varepsilon i v \alpha \iota ~ \tau ט ̇ \pi o v ~ D ~ \tau \omega v ~$ $\kappa \alpha \iota \mu \pi о \rho \varepsilon i \quad v \alpha \delta \varepsilon \chi \theta \varepsilon i ~ \xi \varepsilon \chi \omega \rho \iota \sigma \tau o ̇$
 $\tau \iota \varsigma ~ \pi \alpha \rho \alpha \pi \dot{\alpha} v \omega$ عıбódovৎ，v $\pi \dot{\alpha} \rho \chi \varepsilon \iota ~ \kappa$
 Barcovision II $\mathfrak{\eta}$ Barcodata 3，$\mu \pi$ o $\sigma v v \delta \varepsilon \theta \varepsilon i \dot{\varepsilon} v \alpha \dot{\alpha} \lambda \lambda o ~ \sigma v ̇ \sigma \tau \eta \mu \alpha, \dot{\varepsilon} v \alpha \mathrm{~m}$ $\dot{\eta} \mu \mathrm{i} \alpha \tau \eta \lambda \varepsilon o \dot{\rho} \alpha \sigma \eta \kappa \alpha \imath v \alpha \dot{\varepsilon} \chi \circ \cup \mu \varepsilon$ $\chi \rho \circ \vee \eta \pi \rho \circ \beta \circ \lambda \dot{\eta} \sigma \varepsilon \pi \varepsilon \rho \iota \sigma \sigma \circ \dot{\tau} \varepsilon \rho \alpha \sigma$
$\Delta i \pi \lambda \alpha$ $\sigma \tau \iota \varsigma ~ \varepsilon \iota \sigma o ́ \delta o u s ~ \tau \omega \nu ~ \sigma \eta$,
 $\chi \rho \eta \sigma \iota \mu$ олоเєі $\tau \alpha \iota \gamma \iota \alpha \tau \imath \varsigma \rho \cup \theta \mu \mathrm{i} \sigma \varepsilon \iota \varsigma \kappa$ $\dot{\varepsilon} \lambda \varepsilon \gamma \chi \circ \tau \omega \nu \delta \delta \alpha \varphi \dot{\rho} \rho \omega \nu \lambda \varepsilon \iota \tau \circ \cup \rho \gamma \iota \dot{\omega}$ ． $\tau \varepsilon \lambda \varepsilon i \tau \alpha \iota \alpha \pi \dot{\iota} \tau \varepsilon \dot{\varepsilon} \sigma \varepsilon \rho \iota \varsigma \pi \varepsilon \rho \iota \sigma \tau \rho \circ \varphi$ $\delta ı \alpha к о ̇ \pi \tau \varepsilon \varsigma ~ к \alpha \iota ~ \tau \varepsilon ̇ \sigma \sigma \varepsilon \rho ı \varsigma ~ \delta ı \alpha к о ̇ \pi \tau \varepsilon \varsigma ~$ ON／OFF．Ot $\pi \varepsilon \rho \iota \sigma \tau \rho о \varphi \iota к о і ~ \delta \iota \alpha к$ $\rho \cup \theta \mu i \zeta o u v$ тך $\varphi \omega \tau \varepsilon ı v o ̇ \tau \eta \alpha$（bright $\tau \eta \nu \alpha v \tau i \theta \varepsilon \sigma \eta$（contrast），$\tau$ о кон （saturation）$\kappa \alpha \iota \tau \eta v \alpha \pi \delta \dot{\chi} \rho \omega \sigma \eta$（Hu $\chi \rho \omega \mu \dot{\alpha} \tau \omega \nu \tau \eta \varsigma$ عוко̇va̧．

｜IIIIIIIIIIIIIII｜｜｜｜｜｜｜｜｜｜｜｜｜｜

Aпоبрatioate!

 （Video TTL，RGBS к $\alpha \iota$ RGsB）．П $\alpha \rho \alpha-$
 $\mu о \rho \varphi \dot{\varepsilon} \varsigma:$ To RGB．S лои хрךбчнолотві
 RGsB π ou $\pi \varepsilon \rho เ \varepsilon ̇ \chi \varepsilon ⿺$ to $\sigma \cup \gamma \chi \rho 0 v i \sigma \mu$ ó $\sigma \tau 0 v$ $\pi \alpha \lambda \mu$ ó $\tau 0 \cup \pi \rho \dot{\alpha} \sigma ı v o v \chi \rho \dot{\omega} \mu \alpha \tau о \varsigma$.

О $\delta \varepsilon ט ் \tau \varepsilon \rho \circ \varsigma ~ \delta \iota \alpha \kappa о ̇ \pi \tau \eta \varsigma, ~ \varepsilon \pi ı \lambda \dot{\varepsilon} \gamma \varepsilon ı \tau \alpha$ $\sigma \cup \sigma \tau \eta \dot{\eta} \mu \tau \alpha \mathrm{Pal} /$ Secam／NTSC 4.43 （ $\theta \dot{\varepsilon} \sigma \eta$ N3）$\dot{\eta} \tau \alpha \quad \sigma \cup \sigma \tau \eta \dot{\eta} \mu \tau \alpha \mathrm{Pal} /$ Secam／NTSC 3.58 （ $\theta \dot{\varepsilon} \sigma \eta \mathrm{N} 4$ ）．M $\varepsilon \tau \circ \tau \tau \rho i \tau \circ, \varepsilon \pi\llcorner\lambda \dot{\varepsilon} \gamma \varepsilon \tau \alpha \iota \circ$
 $\mu \varepsilon$ тоv $\tau \dot{\varepsilon} \tau \alpha \rho \tau о$ ठıако̇ $\tau \tau \eta$ ，$\varepsilon \pi \iota \lambda \dot{\varepsilon} \gamma \varepsilon \tau \alpha \iota \eta$
 Barcovision II η $\sigma \cup \chi v o ̇ \tau \eta \tau \alpha \alpha \cup \tau \eta$ ки $\mu \alpha i-$
 Barcodata $3 \mu \varepsilon \tau \alpha \xi \dot{v} \quad 15-32 \mathrm{KHz} . \mathrm{H}$

 $\sigma \alpha \dot{\alpha} \rho \omega \sigma \eta \varsigma \varepsilon \tau \alpha \xi \dot{v} 50 \kappa \alpha \iota 100 \mathrm{~Hz}$ ．О入о்к $\quad \eta$－ ро то $\chi \varepsilon เ \rho เ \sigma \tau ท ่ \rho เ о, ~ \mu \pi о \rho \varepsilon і ~ v \alpha ~ \alpha \pi о \mu \alpha к \rho и \vee-~$
 $\gamma i v o v \tau \alpha \iota \alpha \pi \dot{o} \mu \alpha \kappa \rho \iota \alpha \dot{\alpha} . \Delta i \pi \lambda \alpha$ ото $\chi \varepsilon \iota \rho \iota-$

 рıкойц $\delta \iota \alpha \kappa о ̈ \pi \tau \varepsilon \varsigma . ~ Г \imath \alpha \pi \alpha \rho \dot{\alpha} \delta \varepsilon ı \gamma \mu \alpha$ ，v $\pi \dot{\alpha} \rho-$
 $\pi \circ \lambda \iota \kappa o ̇ \tau \eta \tau \alpha$（ $\theta \varepsilon \tau \iota \kappa \eta \dot{\eta} \quad \alpha \rho \vee \eta \tau \iota \kappa \dot{\eta}) ~ \tau \omega \nu$ $\alpha \kappa \dot{\partial} \lambda o v \theta \omega \nu \quad \sigma \eta \mu \dot{\alpha} \tau \omega \nu$ TTL：R，G，B，S， Vert Sync，Hor sync к α Intensity（High／
 $\mu \dot{\varepsilon} \tau \rho \omega v, \varepsilon \lambda \dot{\varepsilon} \gamma \chi \varepsilon \tau \alpha \iota \eta$ $\eta \sigma \tau \iota \alpha \kappa \dot{\eta} \alpha \pi \dot{\sigma} \sigma \tau \alpha \sigma \eta$ $\tau \omega \nu \quad \sigma \mu \mu \dot{\alpha} \tau \omega \nu$ R，G，B γ / α к $\alpha \lambda \dot{\tau} \tau \varepsilon \rho \eta$

 vлд் $\rho \chi o u v$ ot $\tau \rho \varepsilon ı \varsigma ~ \lambda u \chi v i \varepsilon \varsigma ~ \pi \rho о \beta о \lambda \eta \dot{\eta} \varsigma$ ． （ко̇ккıvך，$\pi \rho \dot{\alpha} \sigma \iota \nu \eta$ к $\alpha \iota \mu \pi \lambda \varepsilon$ ）$\mu \varepsilon \alpha v \dot{\alpha} \lambda о-$
 К $\dot{\theta} \theta \varepsilon$ 甲 ко்ऽ $\mu \pi о \rho \varepsilon i \quad v \alpha \pi \rho о \beta \dot{\alpha} \lambda \lambda \varepsilon \iota \quad \dot{\varepsilon} v \alpha$ $\kappa \dot{\alpha} \delta \rho \circ 1000 \gamma \rho \alpha \mu \mu \dot{\omega} v, \dot{\eta} 5$ ऽ ε ü $\gamma \eta \gamma \rho \alpha \mu \mu \dot{\omega} \nu /$ mm ．К $\dot{\theta} \theta \varepsilon$ рако்ऽ，$\dot{\varepsilon} \chi \varepsilon \iota ~ \varepsilon \pi i \sigma \eta \zeta ~ \delta u ̇ o ~$ $\varepsilon เ \delta \iota к о и ̆ \varsigma ~ \rho u \theta \mu t \sigma \tau \varepsilon ́ \varsigma ~ \gamma ı \alpha ~ \tau \eta \nu ~ \varepsilon \sigma \tau \iota \alpha к \eta ்$

 $\varepsilon i v \alpha ı i \delta \iota \alpha \sigma \varepsilon$ ò $\lambda \eta \tau \eta \nu \dot{\varepsilon} \kappa \tau \alpha \sigma \eta \tau \eta \varsigma$ о日ȯvŋร $\pi \rho о ß о \lambda \eta \dot{\varsigma}$ ．Ако́ $\mu \eta, \kappa \dot{\alpha} \theta \varepsilon \lambda \nu \chi v i \alpha \dot{\varepsilon} \chi \varepsilon ı \delta \iota \kappa o ̇$ $\tau \eta \varsigma ~ \sigma v ் \sigma \tau \eta \mu \alpha \psi \dot{\xi} \xi \eta \varsigma ~ \pi o u ~ \varepsilon \xi \alpha \sigma \varphi \alpha \lambda i \zeta \varepsilon \iota$
 $\delta \iota \dot{\alpha} \rho \kappa \varepsilon \iota \alpha$ ち $\omega \dot{\eta} \varsigma$ ．

O $\lambda \alpha \tau \alpha \chi \rho \dot{\omega} \mu \alpha \tau \alpha \sigma \chi \eta \mu \alpha \tau i \zeta o v \tau \alpha \iota \sigma \tau \eta$ oӨóvŋ $\mu \varepsilon$ « $\alpha v \dot{\alpha} \pi \tau \cup \xi ँ \eta$＂$\sigma \tau \iota \varsigma ~ \sigma \omega \sigma \tau \varepsilon ̇ \varsigma ~ \alpha v a-$
 тоט $\mu \pi \lambda \varepsilon$ ．K $\alpha \theta \dot{\varepsilon} v \alpha \alpha \pi$ ó $\alpha \nu \tau \dot{\alpha} \tau \alpha \beta \alpha \sigma ı \kappa$ $\chi \rho \dot{\omega} \mu \alpha \tau \alpha, \pi \rho \circ \beta \dot{\alpha} \lambda \lambda \varepsilon \tau \alpha \iota \quad \dot{\circ} \pi \omega \varsigma \quad \varepsilon i \delta \alpha \mu \varepsilon \mu$ $\xi \varepsilon \chi \omega \rho \iota \sigma \tau \dot{\eta} \varphi \omega \tau \varepsilon \iota v \eta \dot{\eta} \delta \dot{\varepsilon} \sigma \mu \eta$ ．$\Gamma \imath \alpha$ v $\alpha \sigma$ $\gamma \kappa \lambda i v o u v$ ot $\tau \rho \varepsilon \iota \varsigma \varphi \omega \tau \varepsilon เ v \varepsilon ̇ \varsigma \delta \dot{\varepsilon} \sigma \mu \varepsilon \varsigma ~ \sigma \omega \sigma \tau$ $\sigma \varepsilon \kappa \dot{\alpha} \theta \varepsilon \sigma \eta \mu \varepsilon i o$ тŋऽ oӨóv$\eta \varsigma, \eta$ Barco $\varepsilon \chi \chi \varepsilon$

 $\rho \cup \theta \mu i \zeta \varepsilon \tau \alpha \iota \quad \chi \omega \rho \iota \sigma \tau \dot{\alpha} \kappa \alpha \iota \alpha v \varepsilon \xi \dot{\alpha} \rho \tau \eta \tau \alpha \alpha \pi$
 $v \alpha \alpha v \alpha \varphi \dot{\varepsilon} \rho о \cup \mu \varepsilon$ ȯ兀ı，$\chi \alpha \rho \alpha \kappa \tau \eta \rho ı \sigma \tau \iota \kappa o ̇$ т τ甲ак $\dot{\omega} v \pi \rho о ß о \lambda \eta \dot{\eta}$ єivaı $\eta \mu \varepsilon \gamma \dot{\alpha} \lambda \eta$ $\varphi \omega \tau \varepsilon ⿺$ vótท $\tau \dot{\alpha}$ тous，π ，ov $\varphi \theta \dot{\alpha} v \varepsilon \iota ~ \tau \alpha ~ 440$ lumen．

 $\lambda \varepsilon i \alpha \varepsilon \pi i \pi \varepsilon \delta \eta \dot{\eta} \kappa \cup \lambda \iota v \delta \rho \iota \kappa \eta \dot{~} \varepsilon \pi \iota \varphi \alpha \dot{\varepsilon} \varepsilon \iota \alpha, \mu$ $\delta \iota \alpha \sigma \tau \dot{\alpha} \sigma \varepsilon \iota \varsigma \alpha \pi \dot{\circ} 1 \mathrm{~m} \times 0,75 \mathrm{~m} \mu \dot{\varepsilon} \chi \rho \iota 6 \mathrm{~m} \times$
 $\mu \dot{\varepsilon} \chi \rho \iota \kappa \alpha \iota 2,6 \mathrm{~m} \times 1,95 \mathrm{~m}, \chi \rho \eta \sigma \iota \mu$ отоเ $\varepsilon і \tau а$ －т $\dot{\pi} \circ \varsigma ̧ \varphi \kappa \dot{\omega} v$＂SS＂，$\varepsilon v \dot{\omega} \gamma \iota \alpha \pi \rho \circ$ ßод $\eta \dot{\eta} \sigma$ оӨо்v $\mu \dot{\varepsilon} \chi \rho \iota ~ \kappa \alpha \iota ~ 6 \mathrm{~m} \times 4,5 \mathrm{~m} \chi \rho \eta \sigma \iota \mu о \pi о \iota \varepsilon і$ і $\tau \alpha \iota$ о тט்兀оऽ $\varphi \alpha \kappa \dot{\omega} v$＂LS＂．

 $\varepsilon \pi \iota \pi \lambda \dot{\varepsilon} \circ \vee \nu$ р $\theta \mu \iota \sigma \eta \gamma_{\imath} \alpha \tau \eta \nu \varepsilon \xi \alpha \sigma \varphi \dot{\lambda} \lambda \iota \sigma$
 $\sigma \tau \alpha \sigma \eta$ тоט тото日втвіта৷ то $\mu \eta \chi \dot{\alpha} v \eta \mu$ $\pi \rho \circ \beta \circ \lambda \eta \dot{\varsigma} \alpha \pi \dot{o}$ тŋv oӨövŋ，$\varepsilon \xi \alpha \rho \tau \alpha \dot{\alpha} \alpha$ $\alpha \pi$ ȯ то $\pi \lambda \dot{\alpha} \tau \circ \varsigma ~ \tau \eta \varsigma . ~ \Sigma v v \dot{\eta} \theta \omega \varsigma, \eta \alpha \pi$ ȯ $\sigma \tau \alpha \sigma$
 1，5 X（ $\pi \lambda \dot{\alpha} \tau \circ \varsigma \tau \eta \varsigma ~$ оөóvŋऽ）．

K $\dot{\alpha} \tau \iota \pi o v \alpha \xi i \zeta \varepsilon ı v \alpha \alpha v \alpha \varphi \varepsilon \rho \theta \varepsilon i$ $\varepsilon i v \alpha ı$ о̀т ot Barcovision II к α I Barcodata 3

 $\pi \rho o \sigma \varphi \dot{\varepsilon} \rho \varepsilon \iota$ to Barcodata 3.

H бvбкะvi RCVDS $\mu \varepsilon$ то т т $\lambda \varepsilon \chi \varepsilon \iota \rho \iota \sigma \tau \dot{\rho} \rho \iota$.
$\mu \pi \circ \rho o u ́ v \quad v \alpha$ то $\quad 0 \theta \varepsilon \tau \eta \theta$ oúv $\mu \pi \rho o \sigma \tau \dot{\alpha} \dot{\eta}$
 $\mu \varepsilon \tau \eta \chi \rho \eta \dot{\eta} \eta \varepsilon เ \delta ı \kappa \dot{\omega} \nu \sigma v \sigma \tau \eta \mu \dot{\alpha} \tau \omega \nu \sigma \tau \eta \dot{\rho}$－ $\xi \eta \varsigma, \mu \pi \circ \rho o u ̉ v v \alpha$ то $v o \theta \varepsilon \tau \eta \theta$ oủv $\sigma \tau \eta v$ ороюท் тๆऽ $\alpha i \theta$ ovo $\alpha \varsigma$.
 $\tau \omega v \tau \eta \varsigma$ Barco，$\varepsilon i v \alpha \iota \eta \sigma \pi 0 v \delta \cup \lambda \omega \tau \dot{\eta} \tau 0 \cup \varsigma$
 $\varepsilon \pi \iota \sigma \kappa \varepsilon \cup \dot{\eta}$ тоט̧ $\sigma \varepsilon \pi \varepsilon \rho i \pi \tau \omega \sigma \eta \beta \lambda \dot{\alpha} \beta \eta \varsigma . \mathrm{Ot}$
 $83 \times 57 \times 24 \mathrm{~cm} \kappa \alpha \iota$ то $\beta \dot{\alpha} \rho \circ \varsigma ~ \tau \eta \varsigma ~ 37$ кı $\lambda \dot{\alpha}$ ．

ПЕРІФЕРЕIAKA－ ACCESORIES

H Barco $\gamma \iota \alpha v \alpha \alpha v \xi \dot{\eta} \sigma \varepsilon \iota \tau \iota \varsigma \delta u v \alpha \tau o ̇ \tau \eta \tau \varepsilon \varsigma$ каı $\gamma \iota \alpha$ v α סı ε ккодủveı то $\chi \varepsilon ı \rho ı \sigma \mu o ̇ ~ \tau \omega v$ $\sigma \cup \sigma \tau \eta \mu \dot{\alpha} \tau \omega \nu \pi \rho \circ \beta о \lambda \dot{\eta} \varsigma \pi о \cup \kappa \alpha \tau \alpha \sigma \kappa \varepsilon \cup \dot{\alpha}-$ $\grave{\iota}$ ，$\delta \iota \alpha \theta \dot{\varepsilon} \tau \varepsilon ı, \quad \sigma \alpha v$ options，opı $\sigma \mu \dot{\varepsilon} v \alpha$ $\varepsilon \nu \delta \iota \alpha \varphi \dot{\varepsilon} \rho \circ \vee \tau \alpha \pi \varepsilon \rho \iota \varphi \varepsilon \rho \varepsilon \iota \alpha \kappa \dot{\alpha}$ ．
H бטбкєuท் VS 02 （Video Selector） ouvס்̇є七aı $\mu \varepsilon$ 七ov Barcovision II к $\alpha \iota$ $\chi \rho \eta \sigma \iota \mu$ олоเ $\varepsilon i \tau \alpha \iota \quad \gamma ı \alpha \tau \eta \nu \varepsilon \pi ı \lambda \circ \gamma \eta \dot{\eta} \sigma \eta \mu \alpha \dot{\alpha}$ $\tau \omega \nu \pi 0 \cup \pi \rho \circ \dot{\varepsilon} \rho \chi \circ \nu \tau \alpha \iota \alpha \pi \dot{\circ} \delta เ \alpha \varphi \circ \rho \varepsilon \tau \iota \kappa \dot{\varepsilon} \varsigma$ $\pi \eta \gamma \dot{\varepsilon} \varsigma . \quad М \pi \rho \rho \varepsilon i \quad v \alpha \quad \delta \varepsilon \chi \theta \varepsilon i \quad \mu \dot{\varepsilon} \chi \rho \mathrm{i}$ 它 t $\sigma \dot{\eta} \mu \alpha \tau \alpha$ video，ó $\mu \omega \varsigma$ к $\dot{\theta} \theta \varepsilon$ φ о $\rho \dot{\alpha} \mu$ ỏvo то $\dot{\varepsilon} v \alpha \sigma \dot{\eta} \mu \alpha \theta \alpha \pi \rho \circ \beta \dot{\alpha} \lambda \lambda \varepsilon \tau \alpha \iota \sigma \tau \eta \nu$ o $\theta \dot{o} v \eta$ ． H $\varepsilon \pi ı \lambda o \gamma \dot{\eta} \quad \tau \eta \zeta \pi \eta \gamma \dot{\eta} \zeta, \quad \gamma i v \varepsilon \tau \alpha \mathrm{l} \mu \dot{\varepsilon} \sigma \omega \quad \dot{\varepsilon} \xi \mathrm{l}$ $\delta \iota \alpha \kappa о \pi \tau \dot{\omega} \nu \pi 0 v$ v $\pi \dot{\alpha} \rho \chi o u v \sigma \tau \eta \vee \mu \pi \rho \circ \sigma \tau i-$ $v \dot{\eta}$ ó $\eta ~ \tau \eta \varsigma ~ \sigma \cup \sigma \kappa \varepsilon \cup \eta ் \varsigma . ~ А к о ̇ \mu \eta, ~ \eta ~ V S ~ 02 ~$
 $\pi \tau \varepsilon \varsigma \rho \cup \theta \mu i \sigma \varepsilon \omega \nu \pi 0 \cup \delta i \alpha \theta \dot{\varepsilon} \tau \varepsilon \iota$ o Barco－ vision．Avtó Siveı $\tau \eta$ סuva兀ó $\eta \tau \alpha$ o七o $\chi \rho \dot{\eta} \sigma \tau \eta$ va $\varepsilon \lambda \dot{\varepsilon} \gamma \chi \varepsilon \iota$ ȯ $\lambda \varepsilon \varsigma \tau \iota \zeta \lambda \varepsilon \iota \tau \circ \cup \rho \gamma i \varepsilon \varsigma$ $\alpha \pi \dot{\text { 人 }} \mu \alpha \kappa \rho \iota \dot{\alpha}$ ．
H $\delta \varepsilon ט ̇ \tau \varepsilon \rho \eta \quad \pi \varepsilon \rho เ \varphi \varepsilon \rho \varepsilon \iota \alpha \kappa \dot{\eta} \quad \sigma \cup \sigma \kappa \varepsilon \cup \eta \dot{\eta}$, civaı η RCVDS（Remote Controlled Video and Data Source Selector）$\pi 0 v \mu \pi 0 \rho \varepsilon i v \alpha$
$\delta \varepsilon \chi \theta \varepsilon i \quad \tau \alpha v \tau \dot{\chi} \chi \rho \frac{v \alpha}{} \sigma \dot{\eta} \mu \alpha \tau \alpha$ video，RGB TTL $\dot{\eta}$ RGB $\alpha v \alpha \lambda о \gamma \iota \kappa o ̇ ~ \alpha \pi o ̇ ~ \delta غ ̇ к \alpha ~$
 $\mu o \dot{v o}$ ह́v α $\sigma \dot{\eta} \mu \alpha$ oठ $\bar{\eta} \boldsymbol{\varepsilon} \mathrm{i}$ to Barcovision II $\dot{\eta}$ to Barcodata 3.

H μ ov $\dot{\alpha} \delta \alpha$ RCVDS，ε ivaı $\pi \alpha \rho$ ó $\mu о \iota \alpha \mu \varepsilon$ $\alpha \cup \tau \varepsilon \varsigma \varsigma \pi 0 \cup \pi \varepsilon \rho \upharpoonleft \gamma \rho \dot{\alpha} \psi \alpha \mu \varepsilon \dot{\eta} \delta \eta, \alpha \lambda \lambda \dot{\alpha} \chi \alpha \rho \alpha-$

 $\nu \tau \alpha \iota \sigma \eta \dot{\eta} \mu \tau \alpha \mu$ ȯvo $\alpha \pi \dot{\sigma} \pi \eta \gamma \varepsilon \dot{\varepsilon} \varsigma$ video，$\dot{\varepsilon} v \alpha \varsigma$
 $\delta \dot{\varepsilon} \chi \circ \vee \tau \alpha \iota \sigma \dot{\eta} \mu \alpha \tau \alpha \mu$ óvo $\alpha \pi$ ó v π o λ o $\gamma \iota \sigma \tau \dot{\varepsilon} \varsigma \dot{\eta}$
 $\alpha \cup \tau \varepsilon ่ \varsigma ~ \varepsilon v \alpha \lambda \lambda \alpha \kappa \tau \iota \kappa \varepsilon ̇ \varsigma ~ \lambda u ̈ \sigma \varepsilon ı \varsigma$.

 טл $\dot{\alpha} \chi \varepsilon \iota$ отои૬ Barcovision к $\alpha \iota$ Barcodata． Tóбo ot $\dot{\varepsilon} \lambda \varepsilon \gamma \chi$ ot ò σ o каı ot $\rho \cup \theta \mu i \sigma \varepsilon ı$ ，

 $\pi \lambda \varepsilon \cup \rho \dot{\alpha}$ тŋऽ RCVDS，$\dot{\eta} \mu \varepsilon \tau \eta$ ßо $\dot{\theta} \theta \varepsilon \iota \alpha$ $\tau \eta \lambda \varepsilon \chi \varepsilon เ \rho เ \sigma \tau \eta \rho i o u$.

То $\tau \eta \lambda \varepsilon \chi \varepsilon \iota \rho \iota \sigma \tau \eta \dot{\rho} ь, \pi \rho о \sigma \varphi \varepsilon \dot{\varepsilon} \varepsilon \iota \iota \mu \gamma \dot{\alpha}-$

 $\chi \omega \rho i \varsigma \tau \eta v \dot{u} \pi \alpha \rho \xi \eta \kappa \alpha \lambda \omega \delta i o v$ ．Ev $\sigma \omega \mu \alpha \tau \dot{\omega}-$ veı $10 \pi \lambda \dot{\eta} \kappa \tau \rho \alpha, \gamma \iota \alpha \tau \eta v \varepsilon \pi \imath \lambda 0 \gamma \eta \dot{\eta} \tau \eta \varsigma$ $\pi \eta \gamma \eta \dot{\zeta}$ тou $\sigma \dot{\eta} \mu \alpha \tau \circ \varsigma, 8 \pi \lambda \eta \dot{\kappa} \tau \rho \alpha \gamma 1 \alpha$ $\tau \eta$
 $\sigma \mu \circ$ ธ் $\kappa \alpha \iota \alpha \pi o \dot{\chi} \rho \omega \sigma \eta \varsigma \tau \omega v \chi \rho \omega \mu \dot{\alpha} \tau \omega v \kappa \alpha \imath$ $\tau \dot{\varepsilon} \lambda \circ \varsigma$ то $\pi \lambda \eta \dot{\eta} \kappa \tau \rho \circ$ ON／OFF．Oı $\rho \cup \theta \mu \mathrm{i} \sigma \varepsilon ı \varsigma$ $\gamma i v o v \tau \alpha \iota \quad \xi \varepsilon \chi \omega \rho \iota \sigma \tau \dot{\alpha} \quad \gamma \iota \alpha \quad \kappa \dot{\alpha} \theta \varepsilon \quad \pi \eta \gamma \dot{\eta}$ $\sigma \dot{\eta} \mu \alpha \tau$ о̧．

Ot iסt\＆ऽ $\rho \cup \theta \mu i \sigma \varepsilon ı \varsigma, \mu \pi o \rho o u ̉ v v a \gamma i v o u v$ $\kappa \alpha \iota \alpha \pi \dot{o}$ $\tau \eta \mu$ оvá $\delta \alpha$ RCVDS．H μ ȯv η $\delta \iota \alpha \varphi о \rho \dot{\alpha} \varepsilon \delta \dot{\omega}, \dot{\varepsilon} \gamma \kappa \varepsilon \iota \tau \alpha \iota ~ \sigma \tau о \nu \tau \rho о ̇ \pi о ~ \rho \dot{\theta} \theta \mu \mathrm{l}$－ $\sigma \eta \varsigma ~ \tau \eta \varsigma ~ \alpha \nu \tau i \theta \varepsilon \sigma \eta \varsigma ~(c o n t r a s t) . ~ H ~ \mu o v \alpha \dot{\alpha} \delta \alpha$ $\varepsilon v \sigma \omega \mu \alpha \tau \dot{v \varepsilon \iota} 10 \xi \varepsilon \chi \omega \rho ı \sigma \tau \circ \cup \dot{\varsigma} \pi \varepsilon \rho เ \sigma \tau \rho \circ-$
 отоіоиऽ $\rho \cup \theta \mu i \zeta \varepsilon \iota ~ \tau \eta \nu \alpha v \tau i \theta \varepsilon \sigma \eta \mu$ о́vos $\mu \iota \alpha \varsigma$

 $\varepsilon \pi i \pi \varepsilon \delta \circ$ т $\eta \varsigma \varphi \omega \tau \varepsilon เ v o ̇ \tau \eta \tau \alpha \varsigma$ ，$\tau \eta \varsigma \alpha \nu \tau i \theta \varepsilon$－

 $\pi \circ \cup v \pi \dot{\alpha} \rho \chi O u v \pi \alpha \dot{v} \omega$ $\sigma \tau \iota \zeta ̧ \kappa \alpha \dot{\alpha} \rho \tau \varepsilon \varsigma$.
－O $\tau \alpha \nu \tau \alpha$ бvб $\dot{\eta} \mu \alpha \tau \alpha \pi \rho \circ$ ßодท̆ऽ Barco－ vision II к $\alpha \iota$ Barcodata 3 oঠ $\eta \gamma o u ̈ v \tau \alpha \iota$ $\alpha \pi o \dot{~ v \pi о \lambda o \gamma ı \sigma \tau \varepsilon ̇ \varsigma, ~ \varepsilon i v \alpha l ~ \alpha \pi \alpha \rho \alpha i \tau \eta \tau \eta ~} \eta$ $\chi \rho \dot{\eta} \sigma \eta$ عvȯs interface．Y $\pi \dot{\alpha} \rho \chi o u v$ Sủo $\tau \dot{\varepsilon} \tau \circ \iota \alpha$ interfaces，$\dot{\varepsilon} v \alpha$ RGB TTL $\kappa \alpha \iota \dot{\varepsilon} v \alpha$ RGB $\alpha v \alpha \lambda о \gamma$ ıко̇．

Tغ̇え ${ }^{\circ}$ ，$\sigma \tau \alpha$ accesories $\sigma \nu \mu \pi \varepsilon \rho \iota \lambda \alpha \mu \beta \dot{\alpha} v o-$
 $\sigma v ் \sigma \tau \eta \mu \alpha \sigma \tau \eta \dot{\rho} \iota \xi ้ \eta \varsigma ~ \tau \omega v \pi \rho \circ ß \circ \lambda \dot{\varepsilon} \omega v \alpha \pi \dot{\circ}$ $\tau \eta \nu$ оро甲ทं．

XPHEEIL

H $\alpha \pi \varepsilon \iota \kappa o ̇ v ı \sigma \eta, ~ \sigma \varepsilon ~ \mu \varepsilon \gamma \dot{\alpha} \lambda \eta$ oӨóv η ，

 б $\eta \mu \alpha \sigma i \alpha \varsigma$ б $\varepsilon \alpha v \alpha \rho i \theta \mu \eta \tau о \cup \varsigma ~ \tau о \mu \varepsilon i \varsigma . ~ E v \delta \varepsilon ו-~$ $\kappa \tau \iota \kappa \alpha \dot{\alpha} \alpha v \alpha \varphi \dot{\varepsilon} \rho о \cup \mu \varepsilon$ ò $\tau \iota$ ot Barcovision II к $\alpha \iota$ Barcodata 3，$\mu \pi$ о ρ oúv v α х $\chi \eta \sigma \iota \mu$－
 ＂$\zeta \omega v \tau \alpha v \varepsilon ̇ \varsigma " \alpha \pi \varepsilon \iota \kappa о v i \sigma \varepsilon ı \varsigma \tau \omega v$ ȯ $\sigma \omega v \delta t \delta \dot{\alpha}-$
 $\varepsilon \kappa \pi \alpha i \delta \varepsilon \cup \sigma \eta \quad \alpha \theta \lambda \eta \tau \dot{\omega} \nu \kappa \alpha \iota \pi \rho о \beta о \lambda \dot{\eta} \alpha \gamma \dot{\omega}-$
 $\varepsilon \kappa \pi \alpha i \delta \varepsilon \cup \sigma \eta \pi \omega \lambda \eta \tau \dot{\omega} \nu \kappa \alpha \iota \sigma \tau \varepsilon \lambda \varepsilon \chi \dot{\omega} v, \alpha \pi \dot{o}$

Oı к $\dot{\rho} \tau \varepsilon \varepsilon \varsigma$ үıa $\sigma \dot{\eta} \mu \alpha \tau \alpha$ video，RGB Analog каı RGB TTL，$\pi o v ~ \delta \dot{\varepsilon} \chi \varepsilon \tau \alpha \iota$ η бvбкعvウ RCVDS．

THFH Meprespena:iou

 $\delta \varepsilon \delta о \mu \varepsilon ் v \omega v$ к $\alpha \iota$ graphics, $\alpha \pi$ о̇ vtıбкотє̀к $\gamma \iota \alpha \alpha \pi \varepsilon \iota \kappa o ̇ v ı \sigma \eta$ бטүкротпнд் $\tau \omega v \kappa \alpha \iota \tau \rho \alpha-$ $\gamma 0 \cup \delta 1 \sigma \tau \dot{\omega} v, \alpha \pi$ о̇ $\xi \varepsilon v o \delta o \chi \varepsilon i \alpha$ $\sigma \varepsilon \alpha i \theta$ оט $\sigma \varepsilon \varsigma$ $\sigma \varepsilon \mu \nu \nu \alpha \rho i \omega v \kappa \lambda \pi$.
 $\sigma \cup \sigma \tau \eta \dot{\mu} \alpha \tau \alpha, \varepsilon \xi \alpha \rho \tau \dot{\alpha} \tau \alpha \iota \alpha \pi \bar{\partial} \tau \iota \varsigma \alpha v \dot{\alpha} \gamma \kappa \varepsilon \varsigma$ тоv $\chi \rho \dot{\sigma} \sigma \tau$. Гi $\alpha, \pi \rho о \beta$ о $\lambda \dot{\eta}$ олтıко $\alpha к о \cup \sigma \tau ı к \dot{v} \pi \lambda \eta \rho о \varphi о \rho เ \oplus ் v \pi о \nu \pi \rho о \dot{\varepsilon} \rho \chi о-$ $v \tau \alpha \iota \alpha \pi \dot{\partial} \pi \eta \gamma \dot{\varepsilon} \zeta$ Video ($\kappa \dot{\alpha} \mu \varepsilon \rho \varepsilon \varsigma$, tape recorders, discs) ouviota α, to Barcovision II $\varepsilon v \dot{\omega}$ 徊 $\pi \lambda \eta \rho о \varphi о \rho i \varepsilon \varsigma ~ \pi о \nu$
 $\lambda \eta \lambda o$ عivaı to Barcodata 3.

ЕПIИОГОГ

 $\dot{\varepsilon} v \alpha \nu \pi \rho \circ \beta о \lambda \dot{\varepsilon} \alpha$ Barcodata $3 \pi 0 \nu$ ทं $\tau \alpha \nu$ $\sigma u v \delta \varepsilon \delta \varepsilon \mu \dot{\varepsilon} v o \varsigma \mu \varepsilon \dot{\varepsilon} v \alpha \nu$ Video Tape Recor-
 $v \varepsilon เ \alpha \tau \eta \varsigma \varepsilon เ \kappa o ̇ v \alpha \varsigma, \tau \alpha \zeta \omega \eta \rho \dot{\alpha} \chi \rho \dot{\omega} \mu \alpha \tau \alpha \kappa \alpha \iota$

$\Sigma \tau \alpha$ v $\bar{\varepsilon} \rho \tau \omega \nu \sigma \cup \sigma \tau \eta \mu \dot{\alpha} \tau \omega \nu$ च $\eta \varsigma$ Barco,
 $\tau \circ \pi \circ \theta \dot{\varepsilon} \tau \eta \sigma \eta$ ($\mu \pi \rho \circ \sigma \tau \dot{\alpha} \dot{\eta} \pi \mathrm{i} \sigma \omega \alpha \pi \dot{o} \tau \eta v$

 $\kappa \alpha \iota \eta$ блоv $\delta \cup \lambda \omega \tau \eta \dot{\eta} \tau 0 \cup \varsigma ~ к \alpha \tau \alpha \sigma \kappa \varepsilon \cup \eta \dot{\eta} \pi о \cup$ $\varepsilon \pi \iota \tau \rho \dot{\varepsilon} \pi \varepsilon \iota \varepsilon$ в $к о \lambda \eta$ каı $\gamma \rho \dot{\eta} \gamma о \rho \eta$ $\varepsilon \pi \iota \delta เ$ óp$\theta \omega \sigma \eta$ $\sigma \varepsilon \pi \varepsilon \rho i \pi \tau \omega \sigma \eta \beta \lambda \dot{\alpha} \beta \eta \varsigma$.

ME MIA MATIA

- Ovopa: Barcovision II каı Barcodata 3.

K $\alpha \tau \alpha \sigma \kappa \varepsilon v a \sigma \tau \grave{\zeta}$: Barco Electronics.

Фமtعเvȯtŋта: 440 lm
Δ เакрıто̇тๆ $\tau \alpha$ (олтькท̀): $1.000 \gamma \rho \alpha \mu \mu \varepsilon ் \varsigma$.
Факоі: 3, (ко̇ккıขо̧, $\pi \rho \dot{\sigma} \sigma ı \nu о \varsigma, ~ \mu \pi \lambda \varepsilon)$.

Eíoodot: Video (1 Vpp $\pm 6 \mathrm{db}$), RGB(s) Ava入o $\boldsymbol{\gamma}_{1 \kappa o}(0,7 \mathrm{Vpp} \pm 3 \mathrm{db}$), RGB TTL (ть лолоıๆ $\mu \varepsilon \dot{v} \alpha$ є $\pi і \pi \varepsilon \delta \alpha$ TTL).

$\Delta t \alpha \sigma \tau \dot{\sigma} \sigma \iota \varsigma: 83 \mathrm{~cm} \times 57 \mathrm{~cm} \times 24 \mathrm{~cm}(\mathrm{M} \times \Pi \times \mathrm{Y})$.
Bápoc: 37 кı $\lambda \dot{\alpha}$.

Ol věou

єктט兀шт ς MT 85／86 દival tỏ𧰨o ท̇бuzol ỏ́oo éva．．．

 86 عival $\pi \rho \alpha \gamma \mu \alpha \tau \iota \kappa \alpha \dot{\alpha} \alpha$ ȯ $\rho \cup \beta$ o七．
 －MT $86 \pi \rho \circ \sigma \varphi \varepsilon \dot{\varepsilon} \rho \varepsilon \iota ~ \tau \eta ~ \delta \nu v \alpha \tau o ̇ \tau \eta \tau \alpha 136 \sigma \tau \eta \lambda \omega ้ v$ ．
$\mathrm{K} \alpha l$ ol δ v̇o $\tau \cup \pi \dot{\omega} v o u v ~ \kappa \alpha \tau \alpha \sigma \tau \alpha \dot{\sigma} \varepsilon \iota \varsigma ~ \mu \varepsilon ~ \tau \eta \nu ~ v \psi \eta \lambda \eta \dot{\eta}$ $\tau \alpha \chi \cup ் \tau \eta \tau \alpha \tau \omega \nu 180 \mathrm{cps} \kappa \alpha \iota \varepsilon \pi \iota \sigma \tau \circ \lambda \varepsilon ̇ \varsigma ~ \cup \psi \eta \lambda \eta ŋ \varsigma ~ \pi o เ o ̇ \tau \eta \tau \alpha \varsigma$ $\mu \varepsilon \tau \alpha \chi \cup ๋ \tau \eta \tau \alpha 45 \mathrm{cps}$.

Tv $\dot{\omega} v o u v$ compressed，expanded $\dot{\eta}$ bold $\chi \alpha \rho \alpha \kappa \tau \eta ั \rho \varepsilon \varsigma ~$ $\gamma \iota \alpha \alpha \kappa о \dot{\mu} \alpha \mu \varepsilon \gamma \alpha \lambda \dot{\tau} \tau \varepsilon \rho \eta \pi о \iota \kappa \iota \lambda i \alpha, \varepsilon v \dot{\omega} \delta \iota \alpha \theta \dot{\varepsilon} \tau \circ \cup \nu \kappa \alpha \iota$ graphics．

Tu $\tilde{\infty} v o u v \sigma \varepsilon \sigma \cup v \varepsilon \chi \varepsilon ̇ \varsigma ~ \chi \alpha \rho \tau i ~ \alpha \lambda \lambda \dot{\alpha} \kappa \alpha l \sigma \varepsilon \alpha \pi \lambda \varepsilon ̇ \varsigma$ $\sigma \varepsilon \lambda i \delta \varepsilon \varsigma$.

Eivaı $\alpha \pi \delta ̇ \lambda \nu \tau \alpha \cdot \sigma \mu \beta \alpha \tau о i \mu \varepsilon$ тоטऽ IBM PC к $\alpha \iota$ Apple Macintosh．
 $\varepsilon \kappa \tau \cup ் \pi \omega \sigma \eta$ ．

Avtoi $\varepsilon i v \alpha$ ot MT $85 \kappa \alpha \iota$ MT $86 \alpha \pi o ̇ ~ \tau \eta \nu$
 matrix $\varepsilon \kappa \tau \cup \pi \omega \tau \dot{\nu} \tau \tau \varsigma$ Evمळ̈ $\tau \eta \varsigma$ ．

 4180725，Telex： 212067 HSSC GR．

ҮПОЛОГІЕТНЕ

 ПРОГРАММАТ
ПЕРІАНПТІКН ПЕРІГРАФН ПРОГРАММАТЯN

ПРОлOTOE

 TA ANE ENOE ПPOTPAMMATA TA OПOIA EПIKOINSNOYN METAEY TOYE．TYПIKO ПAPADEITMA ¿YNOETOY MPOTPAMMATOL EINAI ENA＾ORİTHPIO
－£TII EMПOPIKEL EФAPMORE乏 MIA ПEPIAHПTIKH EPMHNEIA TQN ПPORPAMMATQN TRN MEAATSN．EINAI OTI EXOYN

－АРХІкО ҮПОлОIПO
－XPESRIETREEIE．
－\triangle IOPOQEH XPE®ПIITREESN
－hmeponcrio．
－izozytia．
－KAPTEAEs
－KATAETAEH XAPTOEHMOY
－TZIPOE．
－TYחQEIE TQN MEAATQN KATA KATHTOPIA．ERATTEAMA MEPIOXH KAI ミYNAYAEMO AYTRN．
－$\triangle I E Y O Y N \Sigma I O N O R I O$ ．ETIKETEL．KAI TONMA AMMA．
TA ПPOГРАMMATA AПOOHKH乏 ПEPIAAMBANOYN：
－इTAOEPA इTOIXEIA TOY EILOY乏（ПEPIIPAФH．OPIO A乏ФAMEIA乏 KAП）
－AMORPADH．
－EIIARSTH．EミARSTH
－hmeponorio
－KAPTENEE

KATA BOYAHEH TOY ПE＾ATOY MAE TA KATQӨI BOHOHTIKA ПPOIPAMMATA ENANONTAI KATA＾AH＾A ת ANATKEE TOY．

£KENETO乏 ПРОГРАММАТ』N ПEへATQN
 SIB－PEL：

ПPORPAMMATA ПE THN П®AHEH $\triangle I A ~ T H N ~ E П I B A \wedge \cap O M E N H ~ \Sigma Y N T H P H \Sigma H . ~$
－TYח®EH ПEлATONOTIOY

- KPATHEH HMEPOMHNISN IYNTHPHEEQN ANA TYחO EIDOY乏
- ח\＆AHEEI乏 MEPIOAOY ANA MEAATH．
－$\triangle E N$ YTAPXOYN EPTAEIEE ＾OIIETHPIOY
G－PEL 1，G－PEL 2：
EחE＝EPTAZETAI OEA ANAФEPONTAI इTON חPO＾ORO
－XPE®חIITSNEI KANONIKA ANEY ENTYMOY
NG－PEL：
EПEEEPTAZETAI OTI KAI TO ПPOHTOYMENO KAI EПI ПNEON

－ANAAYEH MQAHEESN KATA KATHTOPIA KAI EYTKENTPSTIKA．
PEL－9K：
EПE＝EPTAZETAI OTI KAI TO NG－PEL KAI EחI חNEON：
－KPATA ANA MENATH KAI TIA 9 KATHTOPIE E EI Ω RN TI AROPAZEI
－TEAEYTAIA HMEPOMHNIA ATOPAE
－TYחQEH KATAETAEESE MEлATQN ME TI乏 9 KATHIOPIEE．（AN EXEI ATOPAEEI KATI EMФANIZETAI AETEPIEKOE＇）
- TYחП乏I乏 EYXETHPISN KAPTQN BAEEI K®AIKOY ONOMATO乏
- ПAPATHPHEEI乏．ONOMA YMEYOYNOY

£KEAETO乏 ПPOTPAMMATRN AПOOHKH乏

1．APO－YL：
EXEI EAEYOEPO KQAIKO ME 8 XAPAKTHPE
2．ORGANOT
EXEDIAEMENO TIA NA KPATAEI
－MEXPI 9 AПOOHKE乏
EXEI KQAIKO TH乏 MOPФH
OПOY $A=K \Omega \triangle I K O \Sigma$ AПOOHKH乏 KAI $B=E \Lambda E Y \Theta E P O$
3．T－SERV：
EIDIKQE KATAEKEYAEMENO TIA METANO APIOMO ANTAMAAKTIKQN
－EAEYOEPO乏 KQAIKO乏 $13 \Psi H$ HIOE ANФAPIOMHTIKO乏

－APIOMOE EPMAPIOY
－ПAPAKONOYOHEH ПQЛHEE Ω N KATA TETPAMHNO
TYחISEH ANTAMMAKTIKQN KATS TOY OPIOY AEФANEIA乏
4．NEORIO：
AПOOHKH ГIA £OYПEP－MAPKET MEXPI 8000 EIAH
－K®AIKOE TH乏 MOPDH乏 AA／BBBBBB OПOY AA＝OMA
APIOMHTIKO
－AYTOMATH ENHMEPQEH ME $\mathcal{H} \Sigma$ TIMHE П $\Omega \wedge H \Sigma E \Omega$

EEIPA乏 5600

\MATIE天

PP KAI ПAKETA
 ORATE TRADEMARKS PONAIOE A．E．

£KEAETO乏 ПАКЕТЯN＾OГI乏THPIOY

חAKETO LOG

АПОТЕЛЕITAI АПО 6 ПРОГРАMMATA

- OPTANQMENOE K』AIKO乏 TYחQ乏EII EIAQN KATA KATHIOPIA
- TYחQ乏EII EIAQN KATA KATHIOPIA．OIKORENEIA．OIKO H HPOMHOEYTH KAI OAOY乏 TOY इ ミYNAYAEMOYミ
－TYחתइII E＾EYOEPSN K』AIKQN
－TIMO＾ORHEH（EK $\triangle O \Sigma I \Sigma ~ T I M O \wedge O T I \Omega N$ ．ПIミTQTIKQN KAП）
－ПAPAKO＾OYOHEH AROPSN
－NIANIKH ПQ＾HEH．ПE＾ATE O OQ乏 TO G－PEL1．G－PEL2 ПAKETO MET

OПQ乏 KAI TO ПAKETO LOG AMMA ГIA 5 AПOӨHKE乏
－KAPTEAE KAI I OZZYTIA KATA AПOOHKH＇H इYNONKKA
FM－TR－WORD：
EПEZEPTAETH乏 KEIMENOY ГPADEI EMAHNIKA META＾A MIKPA（MONOTONIKO）． ＾ATINIKA METAへA MIKPA
－ПAPEMBONH $\triangle I A T P A D H ~ П A P A T P A Ф O \Sigma ~ П E P I O \Omega P I A ~$

- METAФOPA ПAPATPAФOY．ENOTOIH乏Iइ KEIMENQN
- EKTYחIQ亡EI乏 ¿E PRINTERS（DOT MATRIX）H ΣE TPAФOMHXANE

DAISY WHEEL（MAPTAPITA）
EENAROI：
ПРОГРАMMA ГIA TOYPIETIKA ГPAФEIA
－EइתTEPIKH $\triangle I A K I N H \Sigma I \Sigma$
－ПPORPAMMATIEMOE ミENARQN TIA MIA ПEPIOAO ANAへORA THN TAQEEA H TIE「A』EEEE HOY TNOPIZOYN
AПOTEAEITAI AПO 6 ПPOTPAMMATA ГIA EPTAEIE乏 $\triangle A T O M E I Q N$
－ПE＾ATE Oח $\Omega \Sigma$ G－PEL1，G－PEL2．
－ 2 AПOOHKEE YAIKSN．

- ПАРАКОЛOYOH乏I乏 AYTOKINHTQN（ПOEOTHTA，ПEへATH，$\triangle E \wedge T I A) ~$
- KATA乏TA乏I乏 METAФOPIK ΩN KATA OAHIO H KATA AYTOKINHTO
－TIMO＾ORHEH（इYTKENTPQTIKH ПEPIOAOY．$\triangle E \wedge T I A ~ A П O \Sigma T O N H \Sigma) ~$
－$\triangle E A T I A ~ A П O \Sigma T O N H \Sigma$ ，AKYPQTIKA
－KATA乏TA乏İ חQ Ω H乏EQN（HMEPH乏IA．MHNIAIA）
－ГENIKA OM $\Omega \Sigma$ ミTON MPO＾ORO

ПAKETO TS

ПAKETO 3 ПРОГРАММАТ®N ГIA ПAPAKO＾OYOHГH BIOTEXNIA乏 ETOIMQN
ENAYMATSN＇H YחO \triangle HMATQN
－TIMO＾ORHइH（EKДOミH TIMO＾OFIOY，ПIइTQTIKOY इE EIAIKO ENTYПO ГIA ПON＾AПNA METEOH ΣE ENA $\Sigma X E \Delta I O$ ）

EइOTEPIKE乏 EPTA乏IE乏（OIKOTEXNIA）

IAKETO KAPK：

ПАКЕТО 3 ПРОГРАММАТ $\Omega \mathrm{N}$ ГIA ФАРМАКАПОӨНКН．
－ПАРАКОЛОҮӨНЕI乏 AПОЄНKH乏（КАТА ПРОМНӨЕҮTIKH KAI HMEPOMHNIA＾HEES乏
XPHEEQE．AПOOEMATSN）
TIMO＾ORHEH（EK $\triangle O \Sigma I \Sigma ~ T I M O A O R I \Omega N ~ П I \Sigma T \Omega T I K \Omega N ~ K A \Pi) ~(~$

£KEAETO乏 ANEEAPTHTQN ПPOГPAMMATQN
 CL－v：

ПPORPAMMA KAOAPH乏 A三IA乏 TIMO＾OTIQN．ПIITQTIKQN．ГIA KAOE ПE＾ATH KAI ME OПOIA $\triangle H \cap O T E ~ \Sigma E I P A ~ \triangle I \triangle E T A I ~ H ~ A \Xi I A ~ T \Omega N ~ H \triangle H ~ E K \triangle O O E N T \Omega N ~ T I M O \cap O R I Q N . ~$ ПIET $\Omega T I K \Omega N$
AMEIO乏 EAETXO乏 EחI TH乏 OOONH乏 TIA KAOE ПENATH KAI इYNONIKA
$\triangle Y N A T O T H T A ~ \triangle I O P O \Omega \Sigma E \Omega \Sigma$
TYחQ乏II KATA乏TA乏E $\Omega \Sigma$ XAPTO $\mathcal{H M O Y ~ A K P I B \Omega \Sigma ~ O П \Omega \Sigma ~ A П A I T ~ L I T A I ~ A П O ~ T H N ~ E Ф O P I A ~}$ PAYROLL

ПPORPAMMA MIEOOAOEIAE
E
APOOIइTIKA MHNOE ETOY乏（KATA KATHIOPIA OE乏E $\Sigma \Sigma$ ．ANAAY $\Sigma I \Sigma ~ K A T A ~ T A M E I O ~ K A ~) ~$ ミYTKENTPRTIKA）
ANAAYEIE NOMIEMATOE
YПOOAOIIEMOE ATA
ГYMINHPSMATIKH MIIOODOEIA
KPATHEEII TAMEIQN DMY MHNIAIA KAI AOPOILTIKA
PAY－99：
ПPORPAMMA MIE $O O \triangle O \Sigma I A \Sigma$ TIA E $\Omega \Sigma 99$ ETAIPIE Σ TAYTOXPONA
KANEI OTI KAI TO PAYROLL
AUTO－PAY：
Oחת乏 KAI TO PAYROLL AM＾A ME AYTOMATO YחO＾ORIEMO © M Y

KYK $\Omega \Omega M A \cap \Omega \wedge H \Sigma E \Omega N$ KATA $\Pi \Omega \wedge H T H$
TIMAI：
EK $\triangle O \Sigma E I \Sigma$ TIMOKATA＾OR ΩN Y＾IK ΩN
 NOMI乏MA ME $\triangle E \triangle O M E N O$ TO EПIӨYMHTO ПO乏O乏TO KEPAOY乏
इE ПAPOYミE TIME乏．

RENIKH＾OTIETIKH
ПАКЕТО ПРОГРАMMATQN $\triangle E Y T E P O B A \Theta M I A \Sigma ~ K A I ~ T P I T O B A \Theta M I A \Sigma ~$
ГENIKHE AOFIइTIKH乏
－ANOITMA＾ORAPIA乏MOY，＾OTIETIKO ミXEAIO．
－HMEPHEIEE ETTPADEE．
－KATA乏TA乏İ EAETXOY．\triangle IOPO $\Omega \Sigma I \Sigma$
－HMEPONOTIA
－KAPTEAEE ANANYTIKOY，TENIKOY KAOONIKOY
－IEOZYTIA．
－KAEIzIMO ПEPIOAOY

＾．£ҮГГРОҮ 147 －ТНА．9355102－ 9355124

COMMODORE AMIIEA：

E
 Amiga ото перілтєро тпс Commodore， ото PCW Show пои घ̇үıие ото תovбivo то
 غ̇va проотє́ктоия пои va avaфغ́реı то ovoua Amiga．То періттєро́ тŋऽ，ท்таи үєца่то ало் С 128 ка兀ı то vє́o midi interface
 каı छavaėnaıそav тп vèa Break－dancing disco emituxia＂Yoy get more and more from your Commodore 64＂．
A $\lambda \lambda \dot{\alpha}, ~ \varepsilon v \dot{\omega} \eta$ Commodore кратои்бє

 Metacomco éxıı μ ıa Amiga＂．H Meta－ comco，sivai μ ıа аүү $\lambda_{ı к ท ் ~}^{\text {втаıріа } \eta \text { олоіа }}$ $\dot{\varepsilon} \chi \varepsilon ı ~ a v a \lambda \dot{\alpha} \beta \varepsilon ı$ va $ү p \dot{\alpha} \psi \varepsilon ı$ óno to software

үıа тпи Amiga каı о̇таv $\lambda \dot{\varepsilon} \mu \varepsilon$ ò $\lambda \mathrm{o}$ ，
 бєऽ．
 Amiga ото PCW SHOW，$\alpha \lambda \lambda \dot{\alpha} \delta \varepsilon v \tau \eta \nu$ $\dot{\varepsilon} \delta \varepsilon ı \chi \cup \varepsilon$ ото платú коוvȯ．T Tи віхє
 үрафвіо ти்пои，каı єкві тпи пароибіаکє otous ठпиобוоүрáфоис．То тебт пои

 рıо о́үко апо் плпрофорієя үйрш апо் то

 тои μ пхаий μ атос．

 ү $\lambda \dot{\omega}$ обєс．Те்тоıа μ оит $\dot{\lambda} \lambda \alpha$ віठаи каı перıغ்үра廿аи оı ठпиобıоүрáфоı тои BY－ TE каı точ PCW．Гı＇аито́ то λ о́үо，μ торы́

 ठıкш்v．

Н ПРЛТН ЕNTYПЛЕН

 H Amiga eivai to mo evturiwoiar

 пооопаӨ்்бш о́ $\mu \omega \varsigma$ va $\mu \varepsilon \tau \alpha ф \dot{\rho} \rho \omega$
 Personal Computer．

ГЕNIKH ПЕРІГРАФН

 ко $\mu \mu$ व́tıа．То μ о́vıтор（то опоіо о́ $\mu \omega \varsigma$ ，

 ，поט пері λ аमßávधı то disk－drive каı то пктродӧүıо каı，фиवाкд́，то «тоитікı»． плпктродо́үıо，ипоряi va крифтвi
 тt ano to disk－drive．E६wtepikd，to
 \checkmark IBM PC compatible tnc Commo－
 обохモ́c：
Ȩoסoc／Eiooboc video．

E૬oסoc RGB үıa $\dot{\varepsilon} \gamma x \rho \omega \mu \alpha$ monitors．

 ve．
 to centronics I／F）
Үпобохи் үіа то плпктролӧүוо．

Ако̇ца，ита́рхєı $\mu ı а$ итобохй үіа

То $\pi \lambda \eta к т \rho о \lambda$ о́үı，е̇хєı $89 \pi \lambda \dot{\eta} \kappa т \rho а$

 autós घivaı घ̀vac aró touc λ óyous rou n
 Eирळ̈rn．Аutó тоидàxıotou $\lambda \dot{\varepsilon} \varepsilon ı \eta$ Com－ modore．Katá $\pi \eta ~ \gamma u \dot{\mu} \mu \eta$ иоט ol праүүа－ тікоі λ óyoı घivaı прїто⿱ о́тı ако́ца $\delta \varepsilon v$

ta Xpıotoúyevva tou C 128.

 ठібкои ท் кабغ̇тас каı тпи параүшүท்

 тия Amiga．H Өúpa yıa то video，हivaı kaı
 $\mu \mathrm{k}$ ки μ òvo．
 $31 / 2^{\prime \prime}$（о́п ω к каı тa drives t ωv APRICOT каı ATARI ST）каı μ пореі va катахшрウ̀－
 итобохе́s каı та апараітทта $1 / \mathrm{Fs}$ ，ипа́р． xouv каı үІа ок入про́ Síкко，о опоіоя $\sigma \dot{\mu} \mu \phi \omega v a \mu \varepsilon \pi \eta \nu$ Commodore $\delta \varepsilon$ θa apyñoeı va фavei．
H Amiga，èxel סuvatótnta arধıкóvions

үрафıкш் $\mu \varepsilon$ resolution 640×400 pixels （óoo kaı oı Amstrad）．Ако́ μ а uтадрхоии

 Өоúv үıа та үрафıка́ каı va єцфаviotou̇v O \wedge A tautóxpova otnv oӨ́un．Фuбוкá， $\mu \eta \nu$ перІцд்ยєтє va ठвітє о̀ $\lambda \alpha$ autá $\tau \alpha$
 тп入غópaơn．Гıа то λ о́үo autó，η Commo－ dore $\varepsilon т о \not \mu \dot{\alpha} \zeta \varepsilon ı$ үıа тŋи Amiga סúo $\varepsilon i \delta \eta$

 kaı та хр $\dot{\mu} \mu \alpha \tau \alpha$ тпऽ Amiga $\mu \varepsilon$ т η алаıтои̇ $\mu \varepsilon \cup \eta$ акріßعıа．То вंva ó $\mu \omega \varsigma$ апо்

 arȯठoon tou otepeoф $\omega v i k o u ́ ~ n ̀ x o u . ~$

TO HARDWARE

 $\mu \varepsilon \gamma \dot{\alpha} \lambda \eta$ тахӥтпта，а $\lambda \lambda \dot{\alpha}$ каı тронактıкท்
 по入йплокп каı таито́хооva Өаvцаотŋ்．
 $\pi \lambda n \dot{\rho} \omega \varsigma$ т тi үiveтaı $\mu \dot{\varepsilon} \sigma \alpha$ $\sigma \pi \eta \nu$ Amiga，$a \lambda \lambda \dot{\alpha}$
 періүрафп் тшv киріо்тєр $\omega \nu$ о оок $\lambda \eta \rho \omega$－
 пои пооофغ́роич．

 ов 16 Megabytes $\mu v \dot{\eta} \mu \eta$ ．Ато́ वutà，то

 бто хвוрıатท் та ипо்خоाта 8 Megabytes． Ато́ autá，$\mu \dot{\varepsilon} \sigma \alpha$ отпи Amiga uпápXouv 256 K RAM каı « θ a» טாápxouv $\dot{\alpha} \lambda \lambda \alpha 256$ K ROM．Autท่ η « θ »» ROM，перוغ̇хєı то $\lambda \varepsilon ı т о и р ү ו к о ் . ~ ' О т \omega с ~ о ́ \mu \omega с ~ к а ı ~ о т \eta \nu ~$ перілтшоп тои ATARI 520 ST，та пр тыа

 xouv $\lambda \dot{\theta} \theta \eta$ отои кш்бıка．To μ оит $\dot{\varepsilon} \lambda$ о то
 घіхє 512 K RAM av каı ӧпшс віпацє η Amiga Өa пои入ıє̇таı $\mu \varepsilon 256$ K о்таи фта்бєı ота μ аүаґґа́．

Екто்ৎ ало் тои єпє६єрүаотй，тріа

 yıa tnu kiunon（Animation）twט ypaф1－
 $\varepsilon \lambda \dot{\varepsilon} Y \chi \varepsilon$ ィ та үрафıка́ каı ү）То portia поט

 $\tau \omega \nu \quad \circ \lambda о к \lambda \eta \rho \omega \mu \dot{\varepsilon} \nu \omega \nu$ ，$\theta \alpha \dot{\eta} \theta \varepsilon \lambda \alpha$ va
 Baoiלetaı η бхебiaon tทৎ Amiga kaı oта

опоіа офві入етаı η тахйтทта́ тпऽ．

INTERRUPTS，DMAS KA BLITTERS

 хєı غ̇va поо́үрациа．Tпи iઠıa отıүи прغ்пя va трофоботві $\mu \varepsilon \pi \lambda$ профорієск

 aп＇autóv пגпрофорієс．＇Evac тро́п

 Amiga，$\lambda \dot{v} v \varepsilon ı$ то поо́ß $\overline{\eta \mu \alpha}$ avtìv ти $\dot{\alpha} \sigma \kappa о п \omega \nu ~ к а Ө v \sigma т \varepsilon \rho \dot{\eta} \sigma \varepsilon \omega \nu ~ \mu \varepsilon$ тך $\mu \dot{\varepsilon} \theta 0$ twv \triangle икопш்ט（Interrupts）． $\mathrm{M} \mathrm{\varepsilon} \dot{\alpha} \lambda$

 впіпєठа протєраіотптая（interrupt vels）．Etaı，av غ́va перıфєреıако́ «хаদ

 перıфвреıако аүvовітаı поос то тар Фибіка́，та періферяıака́ пои

 tac．

 отغ்خvєı oñ $\mu \alpha$ ठıакопท்ऽ（interrupt）． аито́ то оท் μ а ठıакопท̇ऽ ßріокетаı

 $\Pi \lambda$ профоріас ало் т $\mu \nu \tilde{\eta} \mu \eta$ каı та бті̀ λ－ oтпv oӨóvŋ．$\Sigma \tau \eta \cup$ Amiga，η оӨóvn $\mu \pi$ о
 $\mu \varepsilon т а ф о \rho \dot{\alpha}$ үіvعı $\mu \varepsilon \dot{\alpha} \mu \varepsilon \sigma \eta$ हпоптвіа т

 वибтท் $\mu a t o c$. ．Гıa va $\mu \eta \nu$ טாápxouv λ om

 Direct Memory Access．M ε т $\mu \dot{\varepsilon} \theta c$ аитท்，то перıфвряıако் паіриعı та $\delta \varepsilon \varepsilon$ $\mu \dot{v} v a$ ar＇$\varepsilon \cup \theta$ zias anó $т \eta \mu \nu \dot{\eta} \mu \eta$ ，$a \phi$

WHFH ROMIHOYTHF

 втафора́द．
Н $\mu \dot{\varepsilon}$ Өобоৎ DMA，хрпбıиопоєвітаı каı rov Atari 520 ST үıa tnv emıtáXuvơ tךद
 0 disk－drive．$\Sigma \tau \eta \cup$ Amiga，$\dot{\varepsilon} \backslash o u \mu \varepsilon$ оט̇t iүo，ои்тє подن் 25 каvव் ${ }_{1 \alpha}$ DMA， ра́үиа пои onuaiveı ótı к $\dot{\alpha} \theta \varepsilon$ перıфє－

 юú，та каvä入ıа $\delta \varepsilon$ «оиүкрои்ovtaı＂

 lemory Access，ótav yivetaı μ ıа $\mu \varepsilon \tau \alpha-$

 втафора́．
 jueı thu Amiga，η Commodore xpךо1－
 LITTER．O ó oоц BLITTER проє́рхєта। по то BIT－mapped BLOCK Transfer． ${ }^{0}$ BLITTER（то олоіо η Commodore yIa а $\mu \alpha \varsigma ~ \mu \pi \varepsilon \rho \delta \dot{\varepsilon} \psi \varepsilon ı$ пєрıббо்тєро，оvо $\mu \alpha \dot{\zeta} \zeta є$ a BIMMER $\dot{\eta}$ BIT－mapped Image
 erox．Bpióketaı $\mu \dot{d} \sigma a$ ото Agnus kaı （غ̇үхєı $\dot{\varepsilon} v a$ каvá入ı DMA．H ßaoıкท் тоט

 Aóvn．
 ou xpŋбıиопоья то BLITTER घivaı
 ба $\mu \varepsilon, \eta$ Amiga $\sigma \chi \varepsilon \delta i a \sigma \varepsilon$ غ̇va bar－chart $\mu \varepsilon$

 kóva．
Me 入iүa λ ȯyıa，η Commodore $\dot{\text { ex }}$ ı
 kável tŋu Amiga غ̀va aró та по
 то́ то $\neq \eta \mu \varepsilon і о$ ，паipuعı д́pıota．

OI ПАРАААНАЕЕ पEITOYPLIEE

H Amiga，غ̇хєı غ̇va $\mu \varepsilon ү \dot{\alpha} \lambda o$ x $\dot{\alpha} \rho ı \sigma \mu \alpha$ ．

 ζ боиц Multitasking．$\Sigma u \cup \eta \dot{\eta} \theta \omega$ ，，то multi－
 ouvסvaouo் software kaı interrupts．O

 va үivouv кониátıa，Sivovtac غ̇toı tךv

 пغ்ра $\mu ı \varsigma \varsigma ~ к а ı ~ \mu \varepsilon ~ т \eta ~ х \rho ท ் o n ~ 25 ~ к а v a \lambda ı \dot{\omega ~}$ DMA，та олоіа $\triangle E$ отацатой тои

 $\mu \alpha т ı \dot{\alpha}$ па $\rho \dot{\alpha} \lambda \lambda \eta \lambda \alpha$ ．

 256 єпіпеба поотєраоотптас．

ТА ГРАФІКА

Ta үрафıкд тпя Amiga utepßaivouv опоьоб்́тоте ота́vtap．Yтápxouv 5 mo － des $\lambda \varepsilon$ וтоирүіас．To mode 1 ，пооофغ்ряı 320×200 pixels кaı 32 хр $\dot{\omega} \mu a t a$ таито்－ xpova otnv oӨóvn，to mode 2，320X400 pixels кaı 32 па் $\lambda_{ı}$ х $\rho \dot{\omega} \mu \alpha \tau \alpha$ ，то mode 3 640×200 pixels kaı 16 xр $\dot{\mu} \alpha$ ta，$\varepsilon \dot{\omega} \dot{\omega}$ то mode 4 Siveı 640×400 pixels kaı 16 хри் μ ата．

 Amiga．Ta x $\rho \dot{\omega} \mu a t a \varepsilon \lambda \dot{\varepsilon} \gamma$ хоитаı ало் то DAPHNE каı «иполоүіఢоитаı＂$\mu \varepsilon \dot{\varepsilon} \dot{\text { va }}$

 api $\theta \mu$ о́ pixels tou xpпбוцопоюй $\mu \varepsilon v o u$ mode．Ta t $\dot{\varepsilon} \sigma \sigma \varepsilon \rho \alpha$ пр $\dot{\tau}$ та modes $\mathrm{x} \rho \eta \sigma$－

 avtiotorxwv bits nои то аvтіmробш－ пеи்оии бто $\psi \eta ф ı к к ் ~ \varepsilon п і п \varepsilon ठ о . ~$

 каı ап $\lambda \dot{\alpha}$ shifts $\tau \omega \nu$ avtiotoıx $\omega \nu$ bits عivaı

 ＂окпиוкó＂каı тпи $\dot{\alpha} \lambda \lambda \eta$ Yıa тоия＂xapa－

EPLAETHPIA ENEYOEPSN EHOY $\Delta \Omega N$ ETA COMPUTERS

A．ENEYӨEPA EПIAГ／KA 1985－86
A1．Dietiç Küк入oc－ $2 \times 9 \mu$－ $2 \times 700 \dot{\omega} \rho$ ．
А2．Avà．Проү／$\mu \circ c _\quad 9 \mu$＿ $700 \dot{\omega} \rho$ ．
А3．Проүра $\mu / \mu \dot{\rho} \varsigma-6 \mu=420 \dot{\omega} \rho$ ．
A4．Taxup．
Проүр／т $\omega \nu$＿ $3 \mu=240$ íp．
A5．Avä̀vơ

A6．Avà̀．Eитор． Ефарн． 7μ－ 350 ін． A7．Xeוрıоио்с H．Y．＿ 3.5μ ． 220 шр．
A8． $\mathrm{\Delta Iat} \mathrm{\rho}$ ．

A11．Mıa $\begin{array}{r}\lambda \dot{\omega} \sigma o a \\ + \\ \end{array}$
Xeוp．
O．S．UNIX
 $.5 \mu-100 \dot{\omega}$
A12．O．S．UNIX $\quad 1 \mu .-70 \dot{\omega} \rho$.
B．ENEYӨEPA MA＠HT Ω N 1985－86

B2．BASIC（ $1 \beta \mathrm{\beta} \theta \mu \mathrm{i} \delta \mathrm{a})-2 \varepsilon \beta$ ．$-16 \dot{\omega} \rho$ ．
B3．BASIC $2 / \chi^{\rho} \rho \mu \alpha=1 \varepsilon \beta$ ．$\quad 8 \dot{\omega} \rho$ ．
B4．BASIC $3 / \mathrm{Hxoc}-1 \mathrm{E} .-8 \dot{\omega} \rho$ ．
SIC／Apx \qquad的一 一 $-8 \dot{\omega}{ }^{2} \rho$.
B6．BASIC／kivnon－ $3 \varepsilon \beta$ ．＿ $24 \dot{\omega} \rho$ ．
B7．MICRO
ASSEMBLER \qquad $4 . \varepsilon \beta$ ．-80 ஸ．
B8．$\Delta \eta \mu$ ．Eikóvac $8 \varepsilon \beta$ ． $160 \dot{\omega} \rho$.
Г．EEMINAPIA ETEAEXIN（EXEC．）
Г1．Mè．ミкопио́тทтас－ 3ε ．$\quad 36$ ш ρ ．
「2．Bảoerç
Плпрофорішँ＿ 2ε ． $24 \dot{\omega} \rho$ ．
Г3．Ору．\＆$\Delta_{\text {Іоік．}}$
$\mathrm{Mnx} /$ кой \qquad 2ε ह．－ $28 \dot{\omega} \rho$ ．
「4．MICROS（Erı入oүn）—— $1 \varepsilon \beta$ ． $18 \dot{\omega} \rho$ ．
「5．MULT：PLAN $\quad 1 \varepsilon$ ． $12 \dot{\omega} \rho$ ．
Г6．D．BASE II＿＿ 2ε ． $24 \dot{\omega} \rho$ ．
Г7．Xеıрıяио் MICRO＿＿ $1 \varepsilon \beta$ ．＿ $12 \dot{\omega} \rho$ ．
「8． $\mathrm{\Delta ikrua}-1 \varepsilon \beta$ ．$-12 \dot{\omega} \rho$ ．
Г9．Epyovouia，
$\mathrm{Mnx} /$ vwon＿－ $1 \varepsilon \beta$ ． $12 \dot{\omega} \rho$ ．
Г10．Eiocy．／Пגпрофоріки்

Δ ．$\Sigma E M$ ．MHXANOTPA $\Phi \Omega N$

 twv Yпотрофıїv

A．Euypooi 40－42， 11742 A＠HNA，
Tŋд．：9228．025－9236．195

ANAПTYTE TON IBM XT＊ПOY EXETE LE MULTIUSER

Ed́v èxete IBM XT＊to ALPHA MICRO AMOS PC UPGRA－

 реітє va eукатабт门бєт otov IBM XT＊то AMOS／AM－170
 va $\mu \varepsilon$ єатре́ $\psi \in \tau \varepsilon$ то XT＊$^{*} \sigma^{\prime}$ èva H／Y MULTI－USER，$\mu \varepsilon$ tpeis
 nảvๆ naipvete èva 128 KB MOTOROLA 68000 eneそepra－ otn kaı to AMOS MULTI－USER，MULTI－TASKING גeוtoup－

 Өoủv кateveriav unó to MS－DOS kaı tavána入ıv ǹ n．x．va

 $\gamma \eta \Theta \varepsilon ı \mu \varepsilon$ то ALPHA MICRO WORD PROCESSING in n．x．va

 tov H／Y mऽ ALPHA MICRO ELS 68 поu пधpièx
 toupyıк் ouothuata AMOS \＆MS－DOS．

 and̀uta ou β ßata ouotì $\mu a t a$ tms ALPHA MICRO nou uno－

ALPHA MICRO

G．ROKKAS，Computers COMPUTER SYSTEMS Г．POKKAE \＆EIA O．E．

EANAMINOE 5，OELEAAONIKH 54626

 THA．513．050－540．649＊XT is a registered trade mark of IBM Corporation $1-2-3^{T M}$ is a registered trade mark of Lotus Development Corporation Word Stars is a registered trade mark of MicroPro International

सНम R

H niow ó $\psi \eta$
 перıүра́феı غ̇va топто каı $\eta \dot{\alpha} \lambda \lambda \eta$ ह̇va т $\rho \dot{\varepsilon} v o$ ．Пávш ото т те́vo μ тореі va avoiyouv парáधupa $\mu \varepsilon \dot{\varepsilon} \sigma$ апо́ та опоіа θ ф фaivetaı to tomio nou kıveitaı miow tou．

 поוш்тая عוбוко் hardware $\mu \varepsilon \dot{\sigma} \sigma \omega$ tov DAPHNE）．Ká $\theta \varepsilon$ SPRITE，$\mu \pi о \rho \varepsilon i \operatorname{va} \dot{\varepsilon} \chi \varepsilon 1$ 3 रрїната．To $\pi \lambda \dot{\alpha} \tau о \varsigma$ tou عivaı 16 pixels，
 періорібио́я．
 סиvatótทte¢ tп¢ Amiga otauatoúv ota 8

 ＇A $\lambda \lambda \eta$ иıа μ аүıкท் $\lambda \dot{\varepsilon} \xi \eta$ үıа то $\dot{\eta} \delta \eta$
 үıotüv घivaı ta GELs．H Amiga пооофغ்－ $\rho \varepsilon ı$ т ̇̇бoधคа $\dot{\eta} \delta \eta$ GELs（ $\dot{\eta}$ Graphic ELements）：Ta Virtual Sprites $\dot{\eta}$ VSPRI－ TES，ta BOBs（ $\dot{\eta}$ BLITTER OBJECTS）， ta Anim Comps kaı ta Anim Objs．
Ta VSPRITES，ε हivaı кaı autá SPRITES，
 каı μ торои́v va عіvaı перıобо்тєра апо் 8.

 $\pi \lambda \dot{\alpha} \tau о \varsigma ~ \mu \dot{\varepsilon} \chi \rho ı 16$ pixels）kaı óoa $\chi \rho \dot{\omega} \mu \alpha \tau \alpha$
 отой таито́хроva oта 4 при்та modes）
$\theta \dot{\varepsilon} \lambda \varepsilon \tau \varepsilon$ ．Ако́ μa ，ta BOBs oxnuatiそoutaı
 $\mu \varepsilon$ ．

Ta Anim Comp $\dot{\eta}$ Animation Compo－ nents sivaı « $\mu \dot{\varepsilon} \rho o \rho_{"} \tau \omega v$ Anim Obj $\dot{\eta}$ Animation Objects．Eva animation object

 $\dot{\varepsilon} v a$＂Animation Component＂$\mu \varepsilon$ то

 pei va káveı то Anim Obj（AvӨpшлákı＂ va kıveital．

Ако́ца，ипа̇рхєı $\mu ı \alpha$ роитіva пои $\lambda \dot{\varepsilon} \gamma \varepsilon \tau a ı$ motion－control animation（ $\dot{\varepsilon} \lambda \varepsilon \gamma$－

 пои кıvвітаı．О ипо入оүıо்ท்я ßабіЦєтаı отп $\theta \dot{\varepsilon} \sigma \eta$ пои $\dot{\varepsilon} \chi \varepsilon ı$ то BOB ，отпи тахи்тпта்

 кєiцعva．H poutiva autท் $\lambda \varepsilon ı t o u \rho \gamma \varepsilon i ́ ~ o a v ~$ software interrupt（ $\delta \eta \lambda \lambda \delta \dot{\eta}$ oav tic colli－ sion routines twv MSX）．Av Yiveı $\mu ı \alpha$
 va поט غ́хєı орıоӨві апо் то хрท்отท каı перıүра́фєı ті прє̇пєı va үіveı ката́ каı $\mu \varepsilon \tau \dot{\alpha}$ тך бט́үкроטđך．
 т те́хєı то поо́үрациа Bobocity тп¢ Com－

voúvtaı пáv ω kaı kȧt otnv oӨóvn．X

 опоіо фаіvetaı то піош $\mu \varepsilon$ роৎ тоט ок

 пиробßعбтіко் кроиvó，пои＂عкиعирї таı» апоктф́عı х $\dot{\varepsilon \rho ı \alpha ~ к а ı ~ б т о ́ \mu \alpha ~ к а ı ~ л а ́ ध ı ~}$
 autüv عivaı tóवo фuवıkn் поט vouii
 oxeठiwu kaı óxı computer graphics．
 graphics yıa tпu Amiga．Eto ßaou
 т ωv ，та́ TOPAZ 8 каı та TOPAZ 9. прйто Siveı 40 каı 80 характท่рєц о modes 1,2 kaı 3,4 avtiotoıxa，evш் ठعu்tяpo 30 каı 60．＇O $\mu \omega$ ¢，о хрウ்oт $\mu \pi о \rho \varepsilon і$ va фортїбधı ало் ठıбкв்та ó

 λ Пиікаं к．$\dot{\alpha}$ ．

Акӧ $\mu \alpha, \eta$ Amiga Siveı тіс عuко入iє¢ ти «rapaӨüpwu＂（windows）．Eva rapát

 Macintosh kaı ото GEM поu xpクoाи поוві о 520 ST тП̧ Atari．A $\lambda \lambda \dot{\alpha} \eta$ Amis $\dot{\varepsilon} \chi \varepsilon ı ~ к а ı ~ п \dot{\alpha} \lambda ı ~ к а \dot{т ı ~ п а р а п а ் v \omega . ~ M ı a ̧ ~}$ טпадрхєı η סuvatónta multitasking π
 $\pi \lambda \dot{\alpha}$ пара́ $\theta \cup \rho а$ пои va ка入и́лтоиข ol

 тє va «катعßа்бете» 入iүo то па́
 ако̇иך по ка́тш．Гıа va ката $\lambda \dot{\alpha} \beta \varepsilon т \varepsilon ~$

 －Etar 入omóv tраßáte 入iүo тпи па́
 ко் $\lambda \lambda$ ая пои $Ө \dot{\varepsilon} \lambda \varepsilon \tau \varepsilon$ ．Фибוка́ то
 iठı μ порвітє va кávet ε кaı $\mu \varepsilon$ тпレ Ami

 $\mu \pi \dot{\alpha} \lambda \alpha$ поט пทंठаүє апо் व́крך оє व́крп

 поо́үрациа пои غ்фтіахие подйхри

bilit ilit MIBID－MMA

－va oas bonөñouम va kávetetnvka入ute－

 xpクouptoreite to micro $\sigma a s$
．Sı0өغтоu micros：Amstrad，Commodore，Sinclair，Oric， Atari，Texas，IBM，TULIP，APRICO KANO m．${ }^{2} \cdot \pi$ ．

 taboni．

सICRIO－NIPRI

T由́pa ס̄ev xpeiáそetaı tnv mó прохшрnцévn texvodoүía．

 Computer，F2 kal F10 проочє́pouv tต́pa tov mó عúko入o
 texvoioyías．

 Tous anó mv прळ́m μ и́pa．
To пєрíчnuo GEM（Graphics Environment

 проүрации́t ωv б ε MSDOS（Lotus l－2－3，D base II клп．）． Пavíoxupa texviká xapakтnpıotкќ ónшॅ： 512 K RAM
 t $\omega \mathrm{v}$ 10MB каи ठıбкє́ta 720K（бо 710）unepoưyxpovo
 Software перıлацßavópevo ounv nụ́．
 povténıa Apricot．

apricot

Tapricot

 каı $\varepsilon \xi \cup ा n \rho \varepsilon$ тńo $\omega \varsigma \varsigma$ пعлатడ́v．
Гia ε ץyunuévn unoorńpıı！n． оииич $\omega \mathrm{va} \mu \varepsilon$ пія пробіаүраче́s tou katagkeuaotoú aпعuӨvveńte MONON
 Kévvpa п $\omega \lambda$ nior ω ¢
 m̧ apricot hellas

AӨHNA

ANKYQN E．I．
Koגокотpఉvn 9，AӨríva 10562 $\operatorname{Tn} \lambda$ ： 3228173
ATKO COMPUTER SYSTEMS
Méoyعí ω v 74，A日ŕva 11527
Tnג： 7783659,7785950
COMPENDIUM E．П．E．
Nínņ 28，A Tnג：： 3226931
MICRO
OOWVOS 99，Knழıəıá 14561
Tnג．： 8085587

MICROPOLIS COMPUTERS E．П．E．

 ミtoupvápa 9，Aөńva 10683 Tn＾：： 3633357MULTI COMPUTERS E．П．E． Innokpátous 52－54，AӨŕva 10680 Tnג．： 3607770
ORANGE COMPUTERS E．П．E．

Tnג．： 8225197

ПEIPAIA Σ

DATA MANA GEMENT
пعшणӨévous 20，Пعıpaıáç 18536 Tnג： 4520222 SAKENET A．E． ¿axtoúpn 12，Пeıpaıá ̧ 18536 TnA．： 4516167

TEXNOAIAETAEH

Kapßouvíwv 8，Өعooa入ovíkn 54621 Tnג．：031－22 3966

Г．OIKONOMIДHट E．П．E．

$\Phi_{1 \lambda}$ ．Etaıpíac 13，Өعooanovikn 54621 TnA．：031－237903

KOPINӨO乏

MHXANOPIANOLH

ПЕЛOПONHะOY Е．П．E．Гkpoútons
Өعotókn 70，KóplvӨos 20100
Tn＾：0741－29508－29020

BOAOE

ENTERCOM O．E．
Avt ω vonoú λ ou－K ω votavtá 135, BóגOৎ 38221 －Tnג：0421－39 789

KPHTH

YПОПОГİTIKH KPHTH乏
Manaס̄ónovגoş इuцعผ்v
Katexákn 17．Hpáкגєıo－Kprím 71201
Tnג．：081－285554

APTA

SAKENET E．П．E．

Bao．Пúpou 21，＇Apra 47100
Tnג：0681－21250

KEPKYPA

IONIAN COMPUTERS E．П．E．

Euayyeגıorpíaç 1，Kźpkupa 49100 Tnג：0661－42584

$\mathrm{PO} \triangle \mathrm{O}$

SENAKHE Г．

Kívס̄ou 60，Póס̋os 85100
TnA．：0241－26597

apricot hellas a．e．
 Mixaגakonoúरou 125

 11527 AӨŕva－Tnג 7793411

 тоо́үрациа $\mu \varepsilon$ тоис аріӨнойс，то опоіо

 про́үрациа $\mu \varepsilon$ тоис аріӨиойс غ̇трехє каvoviкá каı катєßáそoutas λ iүo тn סıкı́

 Avtó EINAI multitasking $\mu \varepsilon \varepsilon к \pi \lambda \eta к т া к \dot{\alpha}$ graphics．Перıттó $\beta \dot{\varepsilon} \beta$ aıa va $\pi \omega$ ，óт ı п oӨóvn avaveшंvetai подú mо үpท்yopa

HXOE

H Amiga aко入ouӨஸ̈vtaç тпи парáסoon

 ǹxоv，та опоіа μ торойv va парáyouv

 каı ката́ пла̇тос каı ката́ бuхvótnта каı

 Tov 68000 ．
－Опшс θ a фаитабтйкате，η Amiga

 غvaç envelope generator，о опоіос μ лорві

 ṅxou．

 Analog to－Digital converter，μ пореітє va

 touç ñxous aró 40 ópyava（anó ф入àouto
 ипєрßо入й，ипорвітє va аvaпарӓүєтє
 каı 4 óprava μ порои̇v va aкоиवто⿱亠乂 таито́хроva каı η घипєןріа，пıтє̇чтє $\mu \varepsilon$ ，

 а६غхаото．

 SPECTRUM $\mu \lambda \lambda a ̈ \varepsilon ı$ ．Naı $\alpha \lambda \lambda \dot{\alpha} \eta$ Amiga $\mu ı \lambda \dot{a} \varepsilon ı$ kavoviká kaı каӨара́（каı ótav $\lambda \dot{\varepsilon} \mu \varepsilon \kappa \alpha \theta a \rho \dot{\alpha} \varepsilon v v o o u ̈ \mu \varepsilon \kappa \alpha \theta a \rho \dot{\alpha})$. Kaı $\quad a v$

 touc фаvatıкoúc．Oı фшvéc прое்рхоитai апо் $\psi \eta ф$ акп аvапараүшүท் $\lambda \dot{\varepsilon} \xi \varepsilon \omega v$ пои

 а $\lambda \lambda \dot{\text { ò }} \phi \omega v$（allophones）пои єпитрепоиט
 поабобท்потя ү $\lambda \dot{\omega} \sigma \sigma a c$, av каı iowc η

 кат $\dot{\lambda} \lambda \lambda \lambda \lambda \alpha$ allophones үıа то охпиатıбдо் тшv $\lambda \dot{\varepsilon} \xi \varepsilon \omega v$ ，ипа́pхєı цia poutiva пои
 үра́фетє ото плпктродо́үıо，хшріद，кацй $\dot{\alpha} \lambda \lambda \eta$ бıaסıкабіа．

TO АEITOYPIIKO

 Metacomco．To Леітоирүікó тŋ̧ Amiga
 TRIPOS．Auto（пои о்пц поди் бшота் каталӓßатє проє́рхєтаı апо் тпи в $\lambda \lambda \eta \nu ו-$
 oúotnua tou Cambridge Ring．To Cam－ bridge Ring，zivaı èva ou̇otnua סıктїou тои охеठוа்отทкє ото Cambridge Univer－

To Amiga DOS，перıвххєı то TRIPOS каı

ムeV xpeidize

ya va unohovioete ri ked tov ayopaceete ano to compu

поגúmגокос. To Computing Center sivaı то катáoтпй поu μ норвí va oa̧
Computers.
(Video games, Home Computers, Business Systems) кaı óฝєৎ тıৎ $\mu a ́ \rho к ะ \varsigma ~ A M S T R A D, ~$
ATARI, COMMODORE, SINCLAIR кaı á $\lambda \lambda \varepsilon$.

COMMODORE 64

O YПONOГILTHE ME TIE

 ПEPIELOTEPEE ПQAHEEIE ETON KOEMO. ME MNHMH 64.000 XAPAKTHPE $\triangle I A O E T E I T A$ KAAYTEPA ГPADIKA KAI TON ПNOYEIOTEPO HXO. ETOIMES YПODOXEE FIA AMEEH EYNDEEHГIA TA

ПAIDIA $\sum A \Sigma$

EEMINAPIA

ПАРАКО ООҮӨНГТЕ TA

EKПAIIEYTIKA EEMINAPIA TOY COMPUTING CENTER KAI EKMETA^^EYTHTE TON
 EПOIKOLOMHTIKA

COMMODORE 12
O MEГANOE ADEAФOE TOY
COMMODORE 64 ME AKOM
MEГAAYTEPH MNHMH KAI \triangle YNATOTHTES ГIA
ЕПАГГЕММАТІКН ХРНЕН. TPE ОАА ТА ПРОГРАММАТА ТОY COMMODORE 64 KAI OMA T

ЕПАГГЕММАТККА
TO NEO MEITOYP
CPM/PLUS.

ϵ
 computer

โદ aV g Center

AMSTRAD 464， 6128

NA ПАHPE乏（ФOHNO）इYETHMA МЕКTPONIKOY YПO＾OГISTH IE KAEETOФSNO＇H DISK RIVE ME MONOXPSMATIKH＇H AI EГXPSMM OOONH．

AMSTRAD 8256

0 «EПАГГЕЛMATIKOE» TH乏 AMSTRAD．ПPOГФEPETAI ΣE ミYNAYAミMO ME TO EKTYПQTIKO KAI ETOIMO ПРОГРАММА ГІА EПE＝EPTAEIA KEIMENOY ETOIMH AYEH ГIA OEOYE OE＾OYN NA KATAPTHEOYN THN

TIMES

OI ©OHNOTEPEE TIMEE METPHTOI乏 ПRNHEEIइ ME \triangle OEEIE
E＝YחHPETHEH TH乏 ПEAATEIA乏 ME ПPOLФOPE EE SOFTWARE KAI 乏YMMETOXH £TA ミEMINAPIA TOY COMPUTING CENTER．

Mivóápou 25 \＆Tбакá $\omega \omega$ ， AӨńva．Tn $\lambda .: 3631361$

सHम ROMDIOY世HP

То поитікı каı то drive．

 avta $\lambda \lambda$ ȧのбоvtac « $\mu \eta v \dot{\mu} \mu a t a » ~ \sigma \dot{\mu} \mu \phi \omega v a$

Eva aло் та ıхиоо்твра опивіа тои TRIPOS sivaı о тролоя $\mu \varepsilon$ тои опоіо

 ठібко oध tracks（бuレท் $\theta \omega \varsigma 40 \dot{1} 80$ ）каı та tracks $\sigma \varepsilon$ sectors．To TRIPOS，$\delta \varepsilon \times \omega \rho i \zeta \varepsilon$ ו та tracks $\sigma \varepsilon$ sectors，$\alpha \lambda \lambda \dot{\alpha}$ хрпбוиопоь $\varepsilon і$

 то directory tou סíarov．

Прıи прохшрท்ош ть т $\dot{\rho} \rho \alpha, \theta \alpha \dot{\eta} \theta \varepsilon \lambda \alpha$
 катахшрои் бко ато́ то Amiga DOS．Ká $\theta \varepsilon$ про́үран－

 $\mathrm{K} \dot{\theta} \theta \varepsilon$ block avtıotoıx ε i o $\varepsilon \dot{\varepsilon}$ ह́va track．Ká $\theta \varepsilon$

 ters）үıа то пропүой μ вио block каı үıа та впо̇цвva．Ако́на катахшрвітаı каı то
 mтwon noט то track $\mu \varepsilon$ то directory катабтрафві，غ̇va «оицßатіко்＂入вוтоир－
 avaүvшрібєı каціа апо் тıс плпрофорієя пои ßріокоитаи ато ठібко．Σ тпи пері－ $\pi т \omega$ оп тои Amiga DOS о̀ $\mu \omega \varsigma$ ，то $\lambda \varepsilon$ וтоир－

үıко́ апó éva каı μ óvo track μ пореі va

 бкоитаı ӧ $\overline{\varepsilon \varsigma} \sigma^{\prime}$ वuto то track．

 ті проүра́ $\mu \mu а т а$ ита́рхоиv．Вغ̇ßaıа，бто

 $\kappa т \lambda$ ．）$\alpha \lambda \lambda \dot{\alpha} \pi \alpha \rho ' \dot{\partial} \lambda \alpha$ аטт $\dot{\alpha}$, घivaı ка́л $\omega \varsigma$ apyó．

 тос．Гıа пара́бعıүиа，о́таи а $\lambda \lambda \dot{\alpha} \zeta \varepsilon т \varepsilon$ ка́лоıо file，оı v $\varepsilon \varepsilon \varsigma ~ \pi \lambda \eta \rho о ф о р і є \varsigma ~ ү \rho а ́ ф о-~$
 пршто்тито file．＇Eтоı то Amiga DOS

 поо́үрациа́ бас．Фортш்иєтє то поо́үрац－

 поо́үрациа $\mu \varepsilon$ то палı் о́vоца．Та оицßатıкд $\lambda \varepsilon ı т о \cup \rho ү ı к \dot{\alpha}$ Өа проотаӨой－ oav va үрд́ $\psi o u v$ то vغ்o поо́үрациа oтп $\theta \dot{\varepsilon} \sigma \eta$ tou па λ_{1} ой．Tı үivetaı ó $\mu \omega \varsigma$ аи то disk－drive Xa入áaधı $\dot{\eta}$ үiveı $\mu ı \alpha$ ठıакопท்

 та́ та $\varepsilon v \delta \varepsilon \chi \dot{\partial} \mu \varepsilon v a$ avoiyoutac $\dot{\varepsilon} v a$ buffer үıа то vغ̇о поо́үра $\mu \mu \alpha$ каı то үра́фєı єкєі．

 апвірахто каı غ่то। μ торвітє va छava

 $\mu \dot{\varepsilon} \gamma \varepsilon Ө$ oç $Ө \dot{\varepsilon} \lambda \varepsilon \tau \varepsilon$ кaı autó onuaiveı ótı aı

 $\dot{\varepsilon} \chi \varepsilon т \varepsilon ~ \sigma т \eta \cup ~ к \varepsilon \cup т \rho ı к ท ் ~ \mu \nu ท ் \mu \eta ~ п о \lambda \lambda \dot{\alpha ~ п р о-~}$ үра் $\mu \mu a t \alpha$ каı $\theta \dot{\varepsilon} \lambda \varepsilon \tau \varepsilon$ va фортய்бєт $\varepsilon \dot{\varepsilon} v a$

 عкєі катахшряі то поооүрациа．
Tо Amiga DOS，ката $\lambda \alpha \mu \beta \dot{\alpha} v \varepsilon ı$ періпои 100 K каı о்тшс віпацє η Commodore

 －Опшৎ каı бтŋи періттшоך тоט ATARI

 avavغ́woñ tou va عivaı عúko入n kaı үрท்yopŋ．
 ако́иך єпілєбо software пои $\lambda \dot{\varepsilon} ү \varepsilon т а ~$ Intuition（＇Eprvevuon）．To Intuition，סive
 то GEM：парáӨupa，ikons к $\lambda \pi$ ．к $\lambda \pi$ ．
 пара் $\lambda \lambda \eta \lambda \alpha$ ，то Intuition єпוтре்пєו ота

COMPUTEAIPIA
ME EAPA THS
OESEAAONIKH

Q H oגorגnpcurévn npooití גưon

TEXNIKA XAPAKTHPIETIKA
128 KB RAM／68008 Motorola Processor（32－bit architecture） 2×100 KB Microdrives／RGB output／TV output／2 RS－232C kavá入ı．
2 Network ports（oúvסeon 64 QL oe סiktuo）／ROM cartridge port／2 Joystic ports／Memory expansion slot．
AEITOYPIIKO EYETHMA Q DOS：To μ ıóvo nou عкцєta入－

EIEKTAEEIE IIA TO QL
 anó 64 KB ह̇́cs 640 KB ．
－Drives yia to QL 3.5 кai 5.25 ivto由́v x x pntiкótntas anó 1 ह́ $\omega<$ S 4 MB．
－Ek nnoós ס́iokos 10 MB ń 20 MB （avauévetar वúvтоца）．

－$\Delta u v a t o ́ t n t a ~ o u ́ v \delta \varepsilon o n s ~ \mu \varepsilon ~ i n \lambda \varepsilon o ́ p a o n ~ n ́ ~ m o n i t o r ~$
 عктuncorn

TA GRAFICS TOY QL

Me to QL éxete tnv סuvatótnta va oxeठ́áoete ypaqiká

To цıóvo PC цє проүрáц̧ıata ota EגAnviká！！！

TO＂OムOK $\Lambda H P \Omega M E N O$＂ПAKETO TH乏 PSION इTA EムヘHNIKA

 yiati：

1．To QUILL－про́үрациа єпє－

 Мпорвітє va үрачєтє غ́va кєi－

 кратйоєтє ото археіо оаs，va
 x ω pis va xpeıázetaı va to द̧ava－

 коцца́на кєццغ்ทตV．

2．To ARCHIVE عivai ε ह̇va ह́धुu－ nvo oủornua סiaxeipions
 кратйоete oto QL ótı xprioıres плпрочорієя кратойoatє μ ехх－
 to八óyıo，ta проióvta tns ano－ Ońkns oas，тиоло́үıа к．Ап．То ARCHIVE oas हпите்пєi va oxeठtáoete tnv obóvn oas ka1

3．To ABACUS عivaı ह̇vaş niva－ каs $\varepsilon п \varepsilon \xi \varepsilon$ рүаоіаद oıкоvоүик由்v otolxєi由v（spread sheet）．
 oas ह̇va ouvnoıopèvo xapri kaı kávete tous λ оүapraouoús oas．

 ABACUS μ óvo nou or $\mu \mathrm{\mu}$ ®̀nua－ tikoi uno入oүıopoi yivovtar anó то ібюо то проурацца，$\mu \varepsilon$ $\mu \varepsilon y \dot{\partial} \lambda n$ taxútnta kaı акрівєıa．

4．To EĀSEL sivaı éva пpóy－
 $\mu \omega \mathrm{V}$ Үрафікө்v параота́оє $(\mathrm{V}$ u乡n入ņ̆ ס́rakpıtıкórntas tóoo
 пıдavóv $\delta \varepsilon v$ дa xpeıaotєi kav va катафйуєтє ото вухєıрібı xprions．Mnopei va kávei ó $\lambda \omega \mathrm{v}$
 үрачікє́s параота́оєıऽ（үрациц்ऽ． кацпй $\lambda \varepsilon \varsigma, ~ 10 т о ү \rho а ́ \mu \mu а т а, ~$ оиүкріtıкоч́s пivakes к．גп．）． Ava入入auBáveı autóभara ta охе̇бıа каı тı̧ кліцакеऽ
 xó oas．

SOFTWARE

 ка入ümtouv ns aváүкеऽ каı tou поо anartntikoú xpriotn：
－TITAOI EANHNIKQN IPOIPAMMATQN
－Пелátes－Апод̈nkn－Tıио入óynon－
Грацца́тіа－Іатріко́ пакغ̇то－По入．
Mnxavikév－MEMOPLAN к．л．п．
－TITNOI ALTAIKQN IPOTPAMMATQN＊ QL TOUCH＇N＇GO－QL INTEGRATED ACCOUNTS－QL CASH TRADER－QL DECISION MAKER－QL ENTERPRENEUR －QL PROJECT PLANNER－QL HOME FINANCE．
－UTILITIES－TOOLS
－Q DOCTOR－SCREEN EDITOR MONITOR－TYPING TUTOR－SBUTIL－ MBACKUP－TERMINAL－CHARGEN－ SBEXTRAS－FM－QL SUPER MON．－
QL SPRIIE GEN．－QLART－QL DUMP－ QL ARCHIVER－QL SCETCH PAD－ PRINTING FORMAT UTILITIES－MON－ QL－ARTIST QL－QL TERMAINAL EMULATOR－PCS UTILITIES－H－RES GRAFICS SC REEN DUMP－ 3 GARNES
（SPRITE SHOOTING，LANDER，MOON
LANDING）－FILE MANAGER－FILE
EDITOR－WD UTILITIES－REF QL－
QSPELL－QL PAYROLL－AGENDA－
GEM－QL TOOLKIT к．λ п．
 －PASCAL－FORTH 79 －BCPL－LISP－ FORTH－ 6800 MACRO ASSEMBLER－ QL FORTH 83 －UCSD－PASCAL－UCSD FORTRAN 77 －APL－ADVANCED DEVELOPMENT TOOLKIT－UCSD P SYSTEM－UCSD PROLOG． ASSEMBLER－LATTICE C．
－metanh Пoikinia ano maixnidia
（＊）MEPIKA ATTתIKA ПPOГPAMMATA DIATIOENTAI MONON KATOMIN
ПАРАГТЕЛią

ПPOEOXH：Zntáte návia tnv ε YYYúnon $\mu \varepsilon$ tnv ачрауіба тп E．C．S A．E．
－Ta $\begin{aligned} \text { YYunuéva QL EגAnvikń ékסoon } \varphi \text { épouv }\end{aligned}$ otnv ouokeuadia tous to onipa ins Eג入nvikn＇s onfaias．Av óxı anєuठuvठeite oe pas aneudeias．

［．C．L．A．E．

AПOKAEIETIKH ANIITIPOEOTIEIA
KENTPO EDAPMORON HAEKTPONIKQN YMONOTIETON EPMOY © ©AKIINOE B－EYNTATMA－AOHNA 10563
 avтіпроownev่ovиe tis aváykes oas
 xpova，xwpic va $\mu \varepsilon i \omega \theta \varepsilon i$ oє $\varepsilon v o x \lambda \eta$ тıко்

Ta парáӨvра，μ лорои̇v va хрŋбıцо－ поюи் опоюбウ்потв апо் та 5 үрафıкы modes tnc Amiga，a $\lambda \lambda \dot{\alpha} \mu$ óvo $\dot{\varepsilon} v a \mu \pi о \rho \varepsilon і$
 avá пáoa отıүцウ்．Гıa va $\delta ı а \lambda \dot{\varepsilon} \xi \varepsilon \varepsilon \tau \varepsilon$ то пар $\dot{\theta} \theta \cup \rho о ~ о т о ~ о п о і о ~ Ө \dot{\lambda} \lambda \varepsilon \tau \varepsilon ~ v a ~ \mu ı \lambda \dot{\eta} \sigma \varepsilon т \varepsilon, ~$

 ото поитікı．Фибıка̇ каı ото Intuition， оппцऽ каı ото GEM，та перıббо்тяа
 поитıкіои́ каı $\tau \omega \nu$ по $\lambda \cup \alpha \dot{\rho} ı \theta \mu \omega \nu$ menu nou unàpxouv．
To Intuition，пєріє̇хєı غ̀va «عıбıкȯ пара́Өиро，то Workbench，пои крата́єı， о́т $\omega \varsigma$ то Control Panel oто GEM，о̀ $\lambda \varepsilon \varsigma$ тıऽ $\pi \lambda$ профорієऽ үıа то ои̇бтпиа（тпи $\dot{\omega} \rho \alpha$ ，та
 $\mu \alpha$ тои cursor，то по́бо үрท்үора кіvвітаı аuто́s к $\boldsymbol{\lambda} \pi$ ．）．

Av $Ө \dot{\varepsilon} \lambda \varepsilon \tau \varepsilon \vee \alpha$ ларака่ $\mu \psi \varepsilon \tau \varepsilon$ то Intuition，

 то̇тє єиعрүопоьєітаı о CLI ท் Command Line Interpreters кaı $\mu \imath \lambda \dot{\text { à }} \boldsymbol{\varepsilon}$ кат $\varepsilon \cup \theta$ عiav $\mu \varepsilon$ to Amiga DOS．
＇Eva onиavtıкó μ ह̀роя тои Intuition， sivaı каı та $\lambda \varepsilon \gamma \dot{\mu} \mu \operatorname{cova}^{\prime}$ Requesters каı Alerts．Ta Requesters givaı «napa日vod́－

 $\lambda \varepsilon$ втоирүіко் ото disk－drive，то்тє غ̇va
 vта¢，«Парака $\lambda \dot{\omega} \beta \dot{\alpha} \lambda \tau \varepsilon$ то бітко $\mu \varepsilon$ то $\lambda \varepsilon ı т о \cup р$ үкко ото disk－drive»．Av каı та requesters $\sigma \cup \cup \dot{\theta} \theta \omega c$ oaç そптоúv va סıa $\lambda \dot{\varepsilon}$－ ६єтє $\mu \varepsilon \tau \alpha \xi \dot{\cup}$ NAI，OXI，OK $\dot{\eta}$ о́тı $\dot{\alpha} \lambda \lambda$ о，то
 апо் оас тіпота парапа̇vш пара́ va
 бібкоч $\mu \pi \varepsilon$ ，то оv்бтпиа каталаßаiveı（！） кaı đuvexiکદı．
 $\mu \pi о \rho о$ viv va aүvoŋӨoúv．Мпорои̇v va ६єпєтахӨойv опоıбঠ்்отє отıүй каı

 غ̀үıve кánoıo crash кт入．

H BASIC KAI OI AMAE玉

Г＾תミEE

－Otav η Amiga поштопароибıáवтпкє
 Metacomco nои घivaı бхعठóv iठıа $\mu \varepsilon \tau \eta \nu$ Personal Basic tnc Digital Research（ η
 comco）．Autŋ̀ η Basic，sixe katŋүop $\theta \varepsilon i$ аркета் үіаті ท்таи арүи் каı віхє غ̇vav по入и пошто́үovo line－editor．Гı＇autó，η

 screen－editor．H غ̇кбоøך поט віठа $\mu \varepsilon$ ，

 editor，sivaı $\dot{\text { Evaç }}$ screen－editor．Δ votu－

 Metacomco $\mu \alpha \varsigma$ парака́ $\lambda \varepsilon \sigma \varepsilon$ va $\mu \eta$ $\delta \eta \mu о \sigma ı \varepsilon \dot{\sigma} \sigma о \cup \mu \varepsilon$ Benchmarks ако̇ $\mu \alpha$ ．
－O入o to software tпc Amiga（to Amiga DOS，to Intuition kaı ó $\lambda \alpha$ та á $\lambda \lambda \alpha$ ）हivaı

 micro－computers te入 $\varepsilon \cup \tau a i a$ ．
 compilers yıa Pascal，C каı BCPL，$\varepsilon v \dot{\omega}$ טпàpxधı kaı غ̇vac interpreter yıa LISP．
 $\mu \varepsilon$ то ठıко touc editor кaı бє тицท่
 єило́рı vпа́рхєı каı Logo，$\varepsilon v \dot{\omega} \mu ı$

 $\mu a \varsigma ~ \lambda \dot{\varepsilon} \varepsilon ı ~ \eta$ Commodore $\eta \dot{\delta} \eta \eta$ iơтa ипгрßaiveı тоия 500 тітлоиц каı оицлярı－ $\lambda \alpha \mu \beta \dot{\alpha} v \varepsilon ı$ пак $т$ та о́пшৎ то WORDSTAR 2000 каı тоLOTUS 1－2－3．Ka λ u̇тєра о́ $\mu \omega$ с
 пріи $\mu і \lambda \grave{\eta} \sigma 0 \cup \mu \varepsilon$ ．

TA DISK DRIVES

 тaı $\mu \varepsilon$ ह̇va disk－drive kaı 256 K RAM．Σ тך

 ерїтnon av то ठєט்теро віvaı aпараітпто，
 о்тı $\delta \varepsilon v$ عivaı avaүкаіо $\mathrm{A} \cap \cap \mathrm{A} \theta a$ ท்та

 Amiga kaı $\xi \varepsilon \sigma ט \cup v \delta \varepsilon \sigma a$ то $\dot{\varepsilon} v a$ disk－drive．

 Basic．

O λ о́үos үı＇autó，घivaı ótı to Ami DOS каı то Intuition ката $\lambda \alpha \mu \beta \dot{\alpha} v o u v 1$ K．Ефóoov 入ọróv η Amiga éxモı μ óvo 2

 каı фортїvetaı цóvo av रןعıaotei．А入

 то бібко $\mu \varepsilon$ то поо́үра $\mu \mu \dot{\alpha}$ ба¢）． үعүovóc о்тו то бט்бтпиа пои хрпоाи
 тпи катáotaờ，$\mu ı$ ¢̧ каı то Amiga DC

Аитó，iow̧ عivaı kaı to μ óvo tрш

 $\alpha \lambda \lambda \dot{\alpha} \mu \varepsilon \dot{\chi} \rho ı$ то̇тє $I \Sigma \Omega \Sigma$ та $\delta \dot{v} \circ$ disk－driv va عivaı غ̇va arapaitnto $\dot{\varepsilon} \xi о \delta o . ~ B \dot{\varepsilon} \beta a$

Kaт $\dot{\alpha}$ та $\dot{\alpha} \lambda \lambda \alpha$ ，та disk－drives हivaıпо
 бноі DMA олшс віпацв）каı ако́， «катадаßаivouv＂по்тє ипа̇рхєı，δ

H AMIGA KAI O IBM P

 twu business micros onj $\mu \varepsilon \rho a$ ，фаivetai
 $\mu \varepsilon$ tov IBM PC．Yrápxouv tóaoı no λ IBM PCs кaı оицßатоі каı то̇оо по software yıa то PC－DOS，пои то пnүaiveı kaveic kȯvtןa sivaı поі рі廿окіибиvo．
＇Etaı 入oıròv，η Commodore napovoi бє ठن்o пакغ்та пои кávouv тпи Ami $\sigma \cup \mu \beta a \tau \dot{\eta} \mu \varepsilon$ тои IBM PC．To $\pi \rho \dot{\omega}$ пакغ்то ка̇vєı тŋv Amiga va боцлєрı

 ＇Eтоь，η Amiga μ торяi va фортш்бяı PC－DOS каı va т тд́धєı о் $\lambda \alpha$ та пак $\dot{~}$ （ $\theta \varepsilon \omega \rho \eta \tau ו к \alpha \dot{)}$ пои т тє́хєı каı о IBM－PC． пакغ்то аutó кобтіそєı خıүотєро апо் 1 бо入入ápıa．Mıа¢ каı про́кєıтаı үıа sa

 тоט 8088），і̀ λ а та проүрдд μ ата

 graphics，ò $\lambda \alpha$ та проүра́ $\mu \mu \boldsymbol{\tau} \alpha$ п
 $\phi \omega v a \mu \varepsilon \tau \eta \nu$ Commodore）$\mu \varepsilon$ тnv i

TCROSODIS

O ПIOMETAMO ONOMA ETOYE MLKPOYE COMPUTERS

Пlos एাOpé́ va 怞 "miáoel» OTIC TIpéc;

QL 39.000!!

SPECTRUM + 22.500!! SANYO MSX 27.000‼

Kı aкópa:
AMSTRAD, COMMODORE 64/128, ATARI... к.ג.п. $\sigma \varepsilon$ тוןદ́ৎ... aпíбтєut६ৎ!

חPOEOXH!

commodore

- 128 K Mทท்un
\square Плпктродо́үıо үрафоипхаиท்я
$\square \mathrm{M} \varepsilon \mu \varepsilon \gamma \dot{\lambda} \lambda \eta$ поккı $\lambda i \alpha$ проүра $\mu \mu \dot{\tau} \tau \omega \nu$

ATAR1 ${ }_{200}$ or

$\square 512$ K RAM MNHMH Σ
 GEM
\square Disk drive $3.5^{\prime \prime} \mu \varepsilon$ хшрŋтікотптта 1 Megabyte.

\square Піпктоодо́үıо
үрафоцпхачи்ऽ 59.000 ΔF

Incinsla 6128

$\square 128$ K RAM
\square Beخtiwuévo CP/M plus
\square Evowuat $\omega \mu \dot{\varepsilon} v o$ Disk drive
3" 89.000 $\Delta \mathrm{F}$

ПЕРIEXEI：ROM，Е入入ŋviкȯ плпктродо̇үıo，

－ 128 K RAM
－ 68008 MOTOROLA PROCESSOR（32－bit architecture）
－ 2 X100 K microdrives
－RGB／TV output
－ 2 serial（RS－232 C）ports
－Network ports（oúvס̌on 64 QL oع ठiktuo）ROM cartridge port
－ 2 Joystick ports
－Memory expansion slot

－Maıxviбıa（Tennis，Metror－Storm，Zapper，QL chess к．$\lambda \pi$ ．）．

XSpectrum +

48 K RAM
Епаүүу $\lambda \mu a t ı к o ́$
$\pi \lambda \eta к т \rho о \lambda о ́ ү ı о$
П入йктро ठıабтйиатоऽ，
（Space bar）
Reset button

PECTRUM
． $7.900 \Delta \mathrm{PX}$
PECTRUM PLUS 27．500 Δ PX

EKTYПתTEE

EKTYHITEE
－EPSON
－SEIKÓSHA
－STAR

LX－80
GX－80
59．900 Δ PX．
55．400 \triangle PX．

 software kaı hardware，афои் перı $\lambda \alpha \mu \beta \dot{\alpha}-$

 ＇Ето，і̇таи та пооүра́циата тои тіс
 عivaı aváykn va tic סıaßá̧ouv anó to
 Amiga，$\lambda \dot{\varepsilon} \varepsilon ı \eta$ Commodore，va тре̇غઘı тa пооүрадциата IBM PC $\mu \varepsilon \tau \eta \nu$ ібıа $\mu \varepsilon$ аuто́v тахи்тпта．

 Amiga．Гı＇autó，η Commodore diveı غ̀va ठєütepo disk－drive（то А 1020）пои

 drive，η Amiga סıaßáไgı touc סiokous tou

 проүра்ниата апо் то＂рєпєрто́ріо＂тои IBM PC．

 เбغ́a tnc Commodore．Пріи о́ншс ало－
 роицв．

EYMПEPAEMATA

H Amiga，घivaı прáүиатı ह̇va паvioxט－ ро $\mu \eta х$ व̇vпиа．Та үрафіка́ тпऽ，апотє－ λ oúv enaváotaon yia to x $\dot{\omega} \rho o$ twv
 хøпоюиотоіпоп twv DMAs kaı twv
 віvaı періпои 10 форє́¢ поо үрйүорп апо் тоט Macintosh．To multitasking；єпוтрغпп। праүиатıко் real－time programming kaı

 éva．©a mıáozı η Amiga；
 отпи Aүү入ia перінои $1200 \lambda_{i \rho \varepsilon \varsigma ~} \mu \varepsilon 256 \mathrm{~K}$ RAM kaı $\dot{\varepsilon} v a$ disk－drive．$\sum \varepsilon$ autá，$\theta \alpha$

 «бвітє» та үрафіка́ тпऽ Amiga．Ако́ца，$\theta \alpha$
 ठєütepo disk－drive va हivaı апараітпто

 тий рєко́р үіа home－micro．Акӧца，
 256 K RAM фтávouv yia tiç eфариоүध́ऽ，

 graphics！

A $\lambda \lambda \alpha$ à عivaı η Amiga home－micro；H Commodore фaivetal va «रturázı» ò $\lambda \varepsilon \varsigma$

 business－man rои θ a aүópaそ̧u ка̇тı пои

H đúyкрıō tทৎ Amiga $\mu \varepsilon$ tov vèo

 ยтохй каı та характทробтікд் tous

 tŋs oxeठiaons каı tou 1бхиро்татои
$\lambda \varepsilon ı t o v \rho ү і к о \cup ̇ ~ t n c . ~ A \lambda \lambda \dot{\alpha}$ o ST घivo

 tor kaı 512 K avti twv 256 K tnc Amiga Ако́ца，о ST х९Пбицотові то GEM то
 $\mu \dot{\varepsilon v o ~ а п о ் ~ т о ~ I n t u i t i o n, ~ \mu ı а \varsigma ~ к а ı ~ т ы ~}$

 uпàpx\＆ı BASIC，software eфариоүшँ

 $\mu \eta \chi \dot{a} v \eta \mu \alpha$ ．＇Ехєı ȯtı $\theta \alpha$ ипоройóa wo

 Commodore va ठய்ozı ह̇va unxávnua ya

 home－micro वє подѝ поо аитаүшvıоткi

ME MIA MATIA

ONOMA：Commodore Amiga

KATAEKEYAETHE：Commodore

HARDWARE

CPU： 68000 tnc Motorola

 kaı ท̀xoc）．
RAM： 256 K ，єпєктȧ兀ıu ота 8 Mbytes．

 yı．

 єпєкта่वॄшు．

SOFTWARE

 пакغ்то проооиоішоŋя тои PC－DOS．
Г＾ЛІ $\Sigma E \Sigma ~ П P O Г P A M M A T I \Sigma M O Y: ~ A m i g a ~ B a s i c, ~ A ~-~ B a s i c, ~ P a s c a l, ~ C, ~ L o g o ~ . ~$ LISP．Etoıй́दદтaı Cobol．
 árvшoто ако́ца то «ठıко́ тои＂software．

YПEP

Фаитаatıká үpaфıкá каıı ńxos
Taxútnta
$\Phi_{1} \lambda_{ı}$ ó user interface
Multitasking
Проаıрєткк் оицßато́tпта $\mu \varepsilon$ то software tou IBM PC

KATA

 віvaı $\mu \dot{\lambda} \lambda \lambda$ о⿱丷 а апараітпто
 petaı oav extra

 характпрітттка் тоu hardware．

H ГNתMH TOY ANTIMPOミ』ПOY

 घivaı ótı，ท்ठŋ η Amiga $\delta ı a \theta \dot{\varepsilon} \tau \varepsilon ı ~ a ́ \phi \theta$ ovo software tóoo tḩ Commodore óoo kaı $\dot{\alpha} \lambda \lambda \omega \nu$ हтаpıìv（Basic，C，Pascal，Lo－ go，Lisp，cross compilers yia Unix， emulator үıa MS－DOS к $\lambda \pi$ ）．Тغ் λ oc，óбov

disk drive，$\delta ı a \phi \omega v o \dot{u} \mu \varepsilon \mu \varepsilon$ то оuvtákтп
 Memox ото Hilton，$\dot{\varepsilon} \gamma ı v \varepsilon \mu \varepsilon \delta \dot{\delta} \circ \alpha \lambda \lambda \dot{\alpha}$ KYPI $\Omega \Sigma \mu \varepsilon \dot{\varepsilon} v a$ drive，yia va $\varepsilon \pi ⿰ \delta \varepsilon ı x т \varepsilon i$

 $\mu \varepsilon$ філıко́ тро́ло о́таи тія хреıабтві． Enion¢，$\mu \pi о \rho \varepsilon i$ kaveic va ypáфeı ta

MEMOX ABEEH．

O．COSMOS Computer

C $=$ commodore C 64 \＆128，Sinclair SPECTRUM QL AWSTRA I 464，PCW 8256，

CASIO，EPSON p．c．\＆Printers．

To pevaio Computer shop

не тіद цикротерея тиц்¢．

MIA ENDIAФEPOYГA EK＠EЕH，ПOY EYNTAXOHKE AПO TO IPAANDIKO IDPYMA DIOIKH乏H乏 EПIXEIPHミERN TIA ΛO OAPIA乏MC TH乏 EПITPOПH乏 EYP Ω IA•I•K』N KOINOTHT

 про́бфата то фшстия бпиобіо́тптас．Av каı ßабіотпкв

 tis Eк日zanc．

Hहाaváotaon tทৎ Мıкоотinp

 véa，ıоXupà epyanzia opyávwoņ k

 （mainframes kaı minis），оض $\mu \varepsilon \rho \alpha \mu \pi о р о і ~$ va anoktñoouv to ठוкó tous μ ккрой入оүוбтіко́ वט்бтпиа．

цáptupaç тоu үعүоvótoc ótı η xpróon tous

 бعкаєтіа tทद．

 та ако்入ouӨа：
Пoıoúc ouцßou入عu̇outaı үıa тпи عाı－ λ оүп் tou кaтá $\lambda \lambda \eta \lambda$ ou hardware kaı software ol μ креєя втаוрієऽ пои

 т ε ，прıи，ката́ каı $\mu \varepsilon т \alpha \dot{\alpha} т \eta \nu ~ \varepsilon ү к а т \alpha \dot{\alpha}-$ otaõ tou μ וкроӥподоүוotıkoú ov－ отйнатос；
 $\mu о у є \varsigma ;$

 проошпикой тоиद；

 otüv tous；
Aпа்vтทon ота парапа́vш عрштท்цата， « $\alpha \dot{\omega} \varsigma$ каı оє по $\lambda \lambda \dot{\alpha} \dot{\alpha} \lambda \lambda \alpha$ ，Siveı $\mu ı a$ к日roпn тои Iр nons Emixelpịoعwu（Irish Management nstitute），поט घंठध про́णфата то фшс thร

 $\lambda \eta \theta \cup \sigma \mu \dot{,}, \alpha \lambda \lambda \dot{\alpha}$ каı то $\mu \dot{\gamma} \gamma \varepsilon \theta$ оৎ каı тךv ктаö ths ayopác．

 taıpia Coopers \＆Lybrand kaı oin Javia aró tı̧ etalpiȩ K．G．Jensen kaı irthur Andersen．T η ү үvikṅ enomtria kal

 ท்o
 ӨПкє غ̇va вוठıко் врштпиато入о́үı пои

 av，amaoxoخov்aav 入iүótepa aпó 100

EXHMA－1－

a：Be $\lambda t \mid \omega \mu \dot{\varepsilon} v e \varsigma$

ß：Bètiwu̇̀vn єпє६єрүабіа，ठıá θ воп тши плдпрофоріши
\mathbf{r} ：E\＆oוкоvóunon xpóvou
6：Bètimuघ̇vec
 anoӨяца́тши
ع：Meiwon kóctous ऍ：Мєүадӥтер акріßвıа
ๆ：Періоріяцо́я пробштікои்，атофиүท่ проол $\dot{\eta} \psi \varepsilon \omega \nu$ ．

EXHMA－2－

 атоӨяца่тши阝：Apxeıö́rnon Y：Лоүוотікй
6：Оıкочодікท் aváえuón
ع：Mıөөобобіа
૬：Kоота入їүnon，

：＇$А \lambda \lambda \varepsilon \varsigma$

EXHMA－3－

a：Eגàxiotn
ß：Mèviotn
\mathbf{y} ：Mèon
1 ＾ipa Ipàavsiaç $=$ 11，2 корळ̇veg Δ aviac

1 ＾ipa Ipavasiac＝

EXHMA -4-

 Diavouñ
乃: Катабкеиаотікє́, \mathbf{Y} : Yтпребієя

EXHMA -5-

EXHMA -6-

 $\mu \pi \varepsilon ı р і \alpha ~ а л о ் ~ т \eta ~ х \rho ท ் எ п ~ \mu ı к р о и ̈ п о \lambda о ү ı \sigma т \dot{~}$

Ато் тпи غ́pzuva апоклвібтпкаи

Katá тпи غ́pzuva, $\lambda \dot{\eta} \phi \theta \eta к \varepsilon$ про́vo
 втаıрї் $\mu \varepsilon$ катабквиабтікท் ठрабтпр

 каı $\lambda_{\text {ıуо்тяро. }}$
 бuvท் $\theta \omega \varsigma$ апо் ठи்о парáүoutec: апо் поооштико் пои алабходойv каı алотт

 piou $\lambda_{1} \rho \dot{\omega} v$ Iр λ avסiac. Оıкоvо хвіа $\dot{\varepsilon} \delta \omega \sigma a v$ та т $\dot{\varepsilon} \sigma \sigma \varepsilon \rho a ~ \pi \dot{\varepsilon} \mu \pi т а ~ т и ~$

 123 брахцєєя.

ГIATI OI EIIXEIPHEEI: XPHEIMOHOIOYN МIKPO•Y•ПOАОГIETE

 λ лоүו丁ті.

 zріпои то घ̀va тріто，прообокойбє $\lambda t i \omega \sigma \eta$ oтnv घाє६६pүaवia kaı oтn

 тои пробшпィкой каı ка入и்тєр аита－

 $\mu \dot{\alpha} \tau \omega v$.

 $\varepsilon ү \chi \circ \varsigma ~ а \pi о \theta \varepsilon \mu \dot{\tau} \tau \omega \nu, \theta \varepsilon \omega \rho \dot{\theta} \theta п к а \nu$ опиа－

 $\omega \varsigma ~ \eta \mu ı \sigma$ Өобобіа，η кобто о̇үпоп каı η $\varepsilon ६ \varepsilon \rho ү а \sigma i a ~ к \varepsilon ı \mu \varepsilon ̇ v o u, ~ Ө \varepsilon \omega \rho ウ ் Ө \eta к а \nu ~ \mu ı-~$ о́тяŋ¢ опиабіас．
Екто́ৎ о́ $\mu \omega \varsigma$ ато் тıৎ проббокієৎ тоиৎ， η фáon tnऽ عוбаүшүท்ऽ тоט μ ккоойпо－ үıбтท่，орıб

 кои́ тоטৎ каı ало் тпи $\dot{\alpha} \lambda \lambda \eta ~ т \eta \nu ~ \alpha \mu ф ı-~$入ia oтпи וкаvótntá touৎ tóao va हाা－
 тіиєтштібоиь та пооß $\lambda \dot{\eta} \mu \alpha$ та поь $\theta \alpha$

 $\tau \dot{\alpha} \lambda \lambda \eta \lambda \omega \nu$ проүра $\mu \mu \dot{\alpha} \tau \omega \nu, \pi \rho о \beta \lambda \eta \mu \dot{\alpha}-$
 $\lambda \dot{\alpha} \delta \alpha$ каı тŋ Δ avia．

Iap＇òخa autá，то $\dot{\varepsilon} v a$ тріто тшט
 ठ $\varepsilon \cup$ праүнатопоіңбаv $\mu \varepsilon \lambda \dot{\varepsilon} \tau \eta$ окопा－

 аүнатопоіПбаи прокатарктікєя，$\mu \varepsilon \lambda \dot{\varepsilon}$－

EXHMA－8－

a：Ектвтаце்ип
阝：Ougiagtikn่
Y：Ме்трıа
8： 亿iyn
ع：Kацı

ехнмА－9．

a：ヘoyıoтท่я

Y：Гعu．$\Delta ı \varepsilon \cup \theta \cup \nu t ท ் \varsigma ~$
6：$\triangle ı \varepsilon \cup \theta u v t ท ் \varsigma ~$ ع：A $\mathrm{A} \lambda \mathrm{\lambda os}$

EXHMA－7－

ミXHMA－10－

a：Kaцı்

 \mathbf{Y} ：ЕЛ入єıџп вилєıріас， отоия иподоүіттє́я 6：ПіӨavá пооß $\lambda_{n} \mu \alpha т а$ ката̇ тпи טлопоіךоп ع：Епа்ркєıа тои проип $Ө$ витй каı тпऽ טпоотท்pi६nя，
ఢ：Ко́бтоз
च：Епилоүท
0：А $А \lambda \lambda \varepsilon \varsigma$

EXHMA－11－

EXHMA－12－

ß：$\Sigma \dot{u} \mu ß \quad$ оидоя
Y：¿uvסvaəuós каı $\tau \omega v$ סvio

 ßоилоו．

 $\varepsilon \varepsilon_{0} \lambda_{ı}$ оиоvं，arȯ software houses， 0

 $\mu ı к \rho о и ̈ п о \lambda о ү ı о т ท ் ~ к а ı ~ т \omega v ~ п р о ү \rho а н и ~ ৷$
 к．$\dot{\text { a．}}$

То ко்бтоৎ т $\omega \nu$ бטцßоu入 $\dot{\omega} \nu, ~ a v \dot{\eta} \lambda \theta \varepsilon$ 42.000 خіряя Iр λ avסiac（5．160．000 $\delta \rho$
 סaráun avá eтaıpia，фтávยı тıç， 740 入ip （91．000 סpx．）oтn Δ avia， $270 \lambda i \rho \varepsilon \varsigma$（33．2 $\delta \rho x$ ．）бтпи I $1 \rho \lambda a v \delta i a$ кaı $130 \lambda i \rho \varepsilon \varsigma$（16．0 $\delta \rho x$ ．）отпи E $\lambda \lambda \dot{\alpha} \delta \alpha$ ．Oı $\mu ı \sigma \varepsilon \varsigma ~ а п о ் ~$

 $\mu \varepsilon ̇ \cup \varepsilon \varsigma$ ．

 üподоүוбтท்．＇O $\mu \omega \varsigma$ ，то́бо аutoi，о̇бо
 поט бициعтвіхє бтпи טлопоіпоп

 －Оишс то пробштіко் пои θ а хрпо поьои்бє тоиৎ μ кроӥпо入оүібтє́ऽ，غ̇прє
 ката́ртібп．$\sum \dot{u} \mu \phi \omega v a \mu \varepsilon$ та отоіхвіа $\dot{\varepsilon} \rho \varepsilon u v a \varsigma$, autท் проض் $\lambda \theta \varepsilon$ кирішс ало்

 ท்баv та $\mu \alpha Ө \dot{\eta} \mu \alpha т \alpha$ бє бхо $\lambda \dot{\varepsilon} \varsigma, \mu \varepsilon$ пооо
 $\mu \varepsilon$ поообто் 6\％．

 ката́ртіoŋ тои пробшпाкой，ol arav

HARDWARE－ SOFTWARE

Oı втаıрієৎ пои غ̇خаßаи $\mu \dot{\varepsilon} \rho о \varsigma$ о

SEITKO Computers とそ̧\＆入íooovtaı paZí óas

AПOKNELETIKOI ANTIIPOEQחOI：UNIDATA AEBE
Aßépoழ 9 xal Mápvn，Äñ́va 10433 Tnd．5248001， 5226292 TLX 223517 UNID GR．

COMMODORE
Winter games $(\mathrm{d}+\mathrm{t})$
Schizofrenia
Sabre wolf
Wizzardly
Karateca
The fourth protocol
Monty on the run
Rambo part II
Hot weels (Disk)
Who dares wins II
Gunnie!
Paradroid
Zoro
International Karate
"Great American..."
Super test
Frank Bruno's Boxing Hacker
Yiear Kung Fu
Gemstone warrior Stealth
к. λ. .п.

проєрхєтаı кирішс апо் тпи Apple каıтпи Commodore，$\varepsilon v \dot{\omega} \eta$ IBM avaф $\dot{\rho} 0 \eta$ пк $\sigma \varepsilon$

 апаıтои̇ $\mu \varepsilon \cup \eta$ вилєıріа т $\omega \nu \dot{\varepsilon} \xi_{1} \mu \eta \nu \dot{\omega} \nu \dot{\eta}$
 $\mu \varepsilon \lambda \dot{\varepsilon} \tau \eta$ ．
 عтаıріа，غ̇фӨабє тіс 9.000 入iряৎ（1．107．000 סpx．）oтn Δ avia， 8.000 入ipec（ 984.000 סpx．）yıa тпи E $\lambda \lambda$ á σa кaı $7.300 \lambda i \rho \varepsilon \varsigma$,

Tа тріа п $\dot{\varepsilon} \mu \pi т а ~ т \omega \nu ~ \varepsilon т а ı \rho ı \omega ் \nu ~ п о ט ~$

 парехӧ $\mu \varepsilon \cup \eta$ биレтท்рпоп．

 $\pi \lambda \eta к т \rho о \lambda о$ үо．
$\Sigma_{\text {то }}$ хш̈ро тои software，паратпр $\dot{\theta} \theta$ п－

 $\dot{\varepsilon т о ı \mu \omega \nu ~ п а к в ่ т \omega \nu ~ \varepsilon i v a ı ~ п \lambda а т \varepsilon ı \alpha ~} \delta ı a \delta \varepsilon-$

 поьои்баv，то 1983 пои ह $\lambda \dot{\eta} \phi \theta$ noav та

 $\mu \pi о р о и ̆ \mu \varepsilon$ ó $\mu \omega \varsigma$ va $\mu \eta \nu$ паратпрท்боч $\mu \varepsilon$

 үаиа каı оı ипочท்фıı аүорабтє́ৎ в்препє

 $\zeta \eta \lambda \dot{\varepsilon} \psi$ оuv тіпотв апо் та ६்̇va，हivaı

ß： В
Y：Оибغ்тєрєऽ
б：Ікаvопоіпие்иея
є：Поли
ィкаขопоппи்̇ยєя
EXHMA－13－
a：ПроипӨвитє́я ε ६оплıбиои்

Y：Оікол 入оүıкой
6：Σ ü μ ßоидо
ع：Геıтоиıкй втаıріа
ζ ：A λ 入oı

ミXHMA－14－

EXHMA－15－

乃：Eneyxoc
 Y：Mıо日oठобia 6：Епг६६рүабіа кєाน $\dot{v} \omega \mathrm{\omega}$
ع：Kataбtixoүpaфia
૬：Kобто入óүпоп
П：${ }^{\prime}$ A $\lambda \lambda \varepsilon$ ，

૬以

COMMODOR虫

RAMBO II
SUPERMAN
BLADE RUNNER
SCALEXTRIC
FIGHTING WARRIOR
HINTER GAMES
SKOOLDAZE
WHO DARES WINS II
MONTY ON THE RUN SUPER ZAXXON
SUMMER GAMES II
SPACE PILOT II
FIZARDRY
SCARABAEUS
IHMOTEP
SCHIZOFRENIA
TERRORMOLINOS
WIZARD'S LAIR
NEVER ENDING STORY
BEACH HEAD II
ELITE
SABRE WULF
KARATEKA
EXPLODING FIST
BATTLE OF BRITAIN
SHO WJUMPER
FRANKIE
HOLLY GRAIL
SKYFOX

ZOAOMOצ 26

SPPCTRRUM
COMMANDO
BEACH HEAD II
POPEYE
TOMAHA WK
AUSTERIITZ
INT/NAL KARATE
SABOTEUR
CRITICAL MASS
STRONG MAN
ELITE
1985 THE DAY ...
BOUNTY BOB
BACK TO SCHOOL
MONTY ON THE RUN
STARQUAKE
METABOLIS
VIEF TO A KILL
FAIRLIGHT
HIGH WAY ENCOUNTER
INT/NAL BASKET
IMP. MISSION
STARION
NIGHTSHADE
2112 AD
FIGHTING WARRIOR
FATERLOO
ROBIN OF THE FOOD SUPER TEST
CAULDRON
YER KUNG FU

AMSTRRAD

BRUCE LEE
NIGHTSHADE
FIGHTING WARRIOR
SATELLITE WARRIOR SOCCER
NEVER ENDING STORY
STRONG MAN
HI RISE
HACKER
MATCH DAY
BOUNTY BOB
TERRORMOLINOS
RAID OVER MOSCOTH
3D GRAND PRIX
CYRUS II CHESS
SLAPSHOT
SPY VS SPY
3D BOEING
PROJECT FUTURE
STARION
GRAND PRIX II
MACADAM BUMPER
3D STUNT RIDER
DOPPLEGANGER
BEACH HEAD
FIZARD'S LAIR
VIET TO A KILL
EXPLODING FIST

ETPYPNAPA 21

EXHMA－16－

a：Yп $\dot{\alpha} \lambda \lambda \eta \lambda о \varsigma$ үрафвіои及：Моүוбтท่s Y：Eипияоштท்я λ оү． $\beta_{1} \beta$ iiwu
6：Xeıpiotins

૬：Ібוоктท่тทя
ๆ：Δ เعuӨuvtinc
0：${ }^{\prime} \lambda \lambda \lambda$ о．

ミXHMA－17－

Та пакغ่та пои хрŋбюопоוои்vтаı п рıбоо்тєро，афорои்v тך 入оүוбтıкウ்，

 $\mu л о \rho \varepsilon і$ va каӨорıотві акрıßట்¢，аф

 тшv aró то бטvo入ıко் ко́бтоя

Н ипоотท்рıॄ̆ пои паре̇хетаı бта

 $\varepsilon \cup \eta \mu \varepsilon \rho \omega \sigma \eta \tau \omega \cup \pi \rho о ү \rho a \mu \mu \alpha \dot{\tau} \omega \cup$ каı $\delta 10$

 о̀пои па́ра по $\lambda \lambda \dot{\alpha}$ апо் та проүра́ $\mu \mu а т ~$ غ́xouv avamtux $\theta \varepsilon i \quad$ ката́ параүүधोi

 $\varepsilon т \eta \sigma i \omega c, 300 \lambda i \rho \varepsilon \varsigma$（ $37.000 \delta \rho x$ ．）$\dot{\eta}$ к
 үрацид்тши тоис．

 ६п тшv проүрацид่тшט пои хрпбщ

 т ωv каӨ்்̧ каı отпи параvónon ти аvaүкய̈ン тПৎ عтаıріас．

 пои хрŋбוцопоюой．Гıa va то каторө

 Basic kaı тпи Cobol．

EФAPMOГE乏 T』N MIKPO•Y•ПO＾OГIET KAI EIIIITR』EI乏 THZ XPHEHE TOYE

$\Sigma \dot{\mu} \mu \phi \omega v a \mu \varepsilon$ та апот $\mu \lambda \varepsilon \dot{\varepsilon} \mu \alpha \tau \alpha$ т
 $\mu \dot{\rho \rho о \varsigma, ~ х \rho \eta б ı \mu о п о є в і ~ т о и \varsigma ~} \mu$ ккоӥпо $\lambda о$

COMPUTER LIFE Enpaivar

YIO^OГIETHE PC-401 THS COPAM

Мкрроєпг६єрүаоті乌 16 BIT INTEL 80884.77 MHZ Проаиретıк் 8087 Coprocessor цаӨпиатікой ипофоуіоной Мvìu 8K ROM, 128K RAM

(512 K бє μ а ка́рта $\mu v \dot{\mu} \mu \mathrm{n}$)

Апо் in Microsoft (MS-DOS 2.11)
Moväöes Floppy disk
 1/4 เบтоต่v.
Xшрптікотттт 3 दок Bytes Formatted
(9 Sectors)
Direct Drive Spindle Actuator Eliminates Belt Replacement.
Moväörs סiokwv Hard disc 10 m 20MB

 LOTUS 1, 2, 3 WORDSTAR/WORKWRITER, GRAPHICS, STATISTICS, TURBO, PASCAL 3,0.
 software otouc тонвіс:
ГENIKH Λ OГİTIKH
ИОГІІТІКН ПЕ \wedge AT Ω N
АПОӨНКН
TIMO $\triangle O Г Н \Sigma \mathrm{H}$
MIL $\Theta O \triangle O \Sigma I A$

COMPUTER LIFE EIIE

micro عuẋeg arió tnv AOH

XPYZH IIPOEDOPA

To Nèo Evioxupı́vo Apple IIe

 OӨóvn 1920 характท்р \quad и．

 （Slots）．Evowhatшндंи ү $\lambda \dot{\omega} \sigma \sigma \alpha$ Basic，$\mu \varepsilon$ в $\lambda \lambda \eta$ пико் ßıß入io．E入入пиıкó Bıß入io Іठוоктท்тท．
Тріа Проүра́ $\mu \mu а т а$

Néa Mpoïóvta

Епє̇ктаоп $\mu v \eta \dot{\mu} \mu \varsigma$ оє $\mathbf{1}$ MB．
 Floppy．Disk 3，5＇${ }^{\prime}$ ，хшрŋтוk． $\mathbf{8 0 0}$ KB．Pascal 1.3

DUVatótntes

 Mouse，Г $\rho a ф о \mu \eta$ хаиєє， Plotters，Epүаотпрıака каı Movaıká ópyava．Me Mnхavท்uata，Hard Disk 5，10，21，45，126 MB． Local Area Network．

Проура́ццата

 кáध ε x

a．Apple Computer

Гıa v’ апоктウ்бєтє ̇̇va праүиатıко́ Computer

I•KH COMPUTERLAND

 Meooysiwu 320, Ay. Парабкєuท், Tn λ : 6529.699 - 6521.379

кєıцвंvov，то 12% үıа катабтіхоүрафіа каı то 7\％үıа кобтодо́үпоп．

 $\varepsilon ф а \rho \mu о ү \varepsilon ் \varsigma, ~ \dot{\omega \sigma \tau \varepsilon ~ v a ~ \varepsilon к \mu \varepsilon т а \lambda \lambda \varepsilon v ் о и т а ı ~}$
 арı $\theta \mu$ ós $\varepsilon ф а \rho \mu о ү \dot{\omega} v$ avá $\varepsilon \tau \alpha ı \rho i a ~ \varepsilon i v a ı 3,5 . ~$

 μ нооой．

 $\chi \omega \rho \dot{\omega} v$ ．$\Sigma \tau \eta \quad \Delta$ avia η عוбוко்тทта пои хрпбиопоєі по тактька тоия μ икроӥпо－

 kaı oו үра $\mu \mu$ атвіс．Σ т η x $\dot{\omega} \rho a \mu \mathrm{a}$ ，оı иподоүıбтє́ хрŋбıиолоюои̇vтаı перıобо்－

 बт $\eta \mathrm{I} \rho \lambda \alpha v \delta i \alpha ~ \eta$ овı $\rho \dot{\alpha}$ हivaı：$\cup \pi \dot{\alpha} \lambda \lambda \eta \lambda$ oı үрафвіои，үрациатвіс каı $\lambda о ү ı о т є є \varsigma . ~$

 бє проß入й $\mu \alpha т а$ пробариоүทंя ото про－

 рои סוعuӨuvtท்．

 впіоךऽ ота плаіала тПऽ غ́peuvac．$\Sigma \varepsilon$

 autüv вivaı 12% ．

£XHMA－19－

a：Kauia阝：Пообштико் үрафвіои y：Пробштико்入oyiompiou
6：Апоөŋкка́рı। ع：A入入o．

EXHMA－20－

a：Avikavȯtita to проип $\theta \varepsilon \cup т ท ่ ~$
阝：Eкпаібвиоп
Y：Үдıко்
6：Прооштико்
ع：Үпоотท்рı६́n
گ：Лоүіко்－Тєкцпрішо
च：Нлектріко் віктио
0：＇Е入єүхоৎ，пеıӨархіа

1：A $\lambda \lambda$ or．

EXHMA－21－

a：Пробєктікท่ єти入оүท่ тои проип θ витท் ß：Bètimpėvn єклаібєиоп тои прооштикои் Y：$\Delta \varepsilon$ үuwpiそ̧uv
6：Avaпо்феикта ع：\ептоиере்бтєрך avà̀uón тои ообті்иатоя ऍ：Проофиүท் $\boldsymbol{\sigma}$ ave乡äptntous оицßойдovs ๆ：A A λ oı．

ANAMNHEEIZ АПО TO MEMON
 гTHNKANAIOEA

EXHMA -24-

EXHMA -22-

a: Δ ióp $\theta \omega \overline{0}$ офад $\mu \dot{\alpha} \tau \omega \nu$ каı тропотои்бвяя
阝: П入ท்рпऽ טтоотท่рı६п
 єкסо்øधıऽ
8: $\mathrm{T} \eta \lambda \varepsilon \phi \omega$ vikn่ טпобтท்рı६ท $\varepsilon: A \lambda \lambda \eta$.

EXHMA -23-

a: Katótiv aitnons

 ouvtnipnons

КЕРДН - ПРОВАНМАТА

 x $\mu \varepsilon ் \cup \eta ~ а п о б о т і к о ́ т \eta т а, ~ а п о ் ~ т о и ~ п е р ı о р ı б \mu \dot{~}$

Екто́я о́ $\mu \omega \varsigma$ ало் та офغ் $\lambda \eta, \mu \varepsilon \rho ı к \dot{\varepsilon} с$

 отך $\mu \varepsilon ү а \lambda$ üт $\varepsilon \rho \eta$ акріßвıа каı пвıӨархіа поט апаıтві η врүабіа $\mu \varepsilon$ ипо λ оүıтєє¢). 0

 паркท்я єкпаіठвиоך тои пооошпикой. - O $\mu \omega \varsigma$, عivaı عuӨappuvtıкo่ то $ү \varepsilon$ үоvó

EXHMA -25-

... Yia connectors Kal antanamktika бто PA IIO KATOYMA A.E.

PADIO

 проүра́ $\mu \mu \boldsymbol{\tau} \alpha$ к $л$ ．Гіа тоия про $\eta \eta \varepsilon \cup-$

 пробıаүрафท் т $\omega \nu$ алаıтท்бع $\omega \nu$ тои п $\varepsilon \lambda \dot{\alpha}-$ т η ，кaı $\eta \dot{\varepsilon} \lambda \lambda \varepsilon ı \psi \eta$ проошлıкои்．Eva
 Өŋкаv，avغ்ф $\rho \varepsilon$ ß $\lambda \dot{\beta} \beta \varepsilon \varsigma$ отоис ठібкоиৎ， ота ठіктиа каı $\sigma т \alpha$ терıфереıакад．＇Eva

 виદ̇рүєıас．＇Ooov афора́ та пооүра́ $\mu \mu$ а－
 $\lambda \dot{\alpha} \theta \eta$ отои пооүрациатьоцо்，$\dot{\varepsilon} \lambda \lambda \varepsilon ו \psi \eta$ фі入ıко்тทтая прос то хри்бти，ауетаркท்я текцпрішоך каı ठибко入іа отпи парохй

 μ торои́баи va uпобві६оии тоо́лоия $\mu \varepsilon$－

 єкпаіठєvav калütера то пробшптко்

 مıய்v．

EIIINOLOE

 xш்pєс．H véa тєxvo入oүia $\sigma \cup v \dot{\varepsilon} \beta a \lambda \varepsilon$

 software кaı oтıৎ ouvӨウ்кеऽ тทৎ аүорác．

EXHMA－26－

a：Be入tiшमह้̇ท бıаөвбіцо́тпта $\pi \lambda п р о ф о р і ш \nu ~$
阝：Bètilunèvoc
 y：E६orкоvóunon xpóvou
6：Кали்тєрп
 ع：Bètiwhèv апоботіко́ттта
 п：Пврıорібио்я ко́otous
0：Bع $\lambda \pi \mid \omega \mu \varepsilon ̇ v \eta$ xøпиаторои் 1：Bètilunėvos $\dot{\varepsilon} \lambda \varepsilon ү х о \varsigma ~ а п о \theta \varepsilon \mu а ் т \omega \nu ~$ к：Пяріоріяцо́я пробштикои் $\lambda: A \lambda \lambda o$.

EXHMA－27－

\author{

- Sinclair Commodore Amstrad BBC Oric Epson
 SPECTRUM (+) 64
 CPC 464
 CPC 664
 B
 atmos
 wx-20
 CPC 6128
 PCW 8256
}

 COMP-2]
 COMP-2]

0

Sinclair commodore amstrad \& عпаүVєлиатикєs єழариоүєs

Xpuoumnov 27
Ay. Iwavvns
ME KAӨE ATOPA
EПI^ELMENA ПPOTPAMMATA

KAOETOE MERФ. BOYMIARMENHE 153
a HNIOYTOMERE 74

9022912•9013101

257.000 бpx.

òла та єцпорıка́ пакغ்та тПS Computer Logic каı CAD

ADVANCED TECHNOLOGY SYSTEMS A.T.S.
SPECIFICATIONS
PC
PC/XT

WEIGHT

8088 AT 4.77 MHz
8087 CO-PROCESSOR (optional)
640 KB RAM STANDARD
8 KB BIOS ROM
8 KB BIOS ROM
TWO RS-232C PORTS
ONE GAME PORT
ONE PARALLEL PRINTER PORT
8 SLOTS
6 SLOTS FREE
TWO DRIVES
360 KB EACH

130 WATT SWITCHER
83 KEYS, IBM LAYOUT
COLOR CARD
RGB.COMP.
640×200
80×25
12 GREEN COMP.

14 Kgr .

5 SLOTS FREE
ONE DRIVE
360 KB
10 MB HARD DISK

MONOCHROME CARD
HIGH RES.
720×384
80×25
12" GREEN TTL

16 Kgr

MISC.

MS-DOS $2 . X$
BASIC
UTILITIES

REAL TIME CLOCK METAL CASE SWIVEL MONITOR

LOCK
HARDWARE RESET
LICENCED BIOS

ASSEMBLER
SELF DIAGNOSTICS
PARITY CHECK

IBM COMPATIBLE

ЕҮРЯПА•ГКО ЕҮMПOЕIO ГIA TIE NEEE TEXNO^OCIE乏

7 Октшßрiov бтŋv غ́бра тои Evpштаїкой Kotvoßоидiov
 tov "Computer yıa Oגovc" Ф. Каратちıác.

TOY Ф Ω TH KAPATZIA

MEPOE I: H BIOMHXANIKH ПРОК
"Katáotaơך غ்ктактךऽ аváүкп¢». M

 ка入 $\dot{\alpha}$ Xaptiá．．．» $\lambda \dot{\varepsilon} \varepsilon ı ~ о ~ к . ~ M i c h e l ~ P o n i a-~$ owski，пןóعठрос тпৎ Eпוтропท்¢ Evep－ घiac，＇Epevvas kaı Texvo入oyias oв тоо́бфато $\dot{\alpha} \rho \theta \rho о$ тои бто тєрıобıко́ «30 lours d＇Europe»．Ta $\lambda \dot{\gamma} y ı \alpha$ autá $\dot{\text { l }}$ Xouv
 Intaç tou k．Poniatowski a $\lambda \lambda \dot{\alpha}$ kaı yıati o

 коп $\lambda \varepsilon к т \rho о и ו к \eta ் \varsigma . ~ \sum \varepsilon \dot{\alpha} \lambda \lambda \alpha \pi \varepsilon \delta i \alpha$, о́л $\omega \varsigma$ о। плепाкоוvшvies，η Eupïrn ßpióketaı
 sounXaviec tnc $\dot{\varepsilon}$ Xouv va палаічouv $\mu \varepsilon$

 ілпрофорıкй，η Роипотікй，та $\mathrm{N} \varepsilon \alpha$
 Iv $\varepsilon \delta \dot{\omega}$ $\delta \varepsilon$ үiveı кáti onuavtikó yıa va

 $\alpha \lambda \cup \phi \theta \varepsilon i$.
Н тexvo入оүıкท่ про́к $\eta \sigma \eta$ ，үıа тŋи
 ı Н．П．А．каı тŋи Iatmvia．Eúvtoua

 Evwơn кaı η Bpa̧ı入ia．H Н $\lambda \varepsilon к т \rho о v ı к \tilde{,}, \eta$

 поט θ а крı $\theta \varepsilon i \quad \eta \mu \dot{\alpha} \chi \eta$ yıa т $\eta \cup$ Tpitn
入ок $\lambda \eta \rho \omega \theta \varepsilon i ~ \mu \varepsilon ் \sigma \alpha ~ \sigma \varepsilon ~ \delta \dot{o}$

$\Delta \dot{\omega} \delta \varepsilon к а$ єк $\theta \dot{\varepsilon}$ бєו¢ пои ка入ӥлтоии то

 oú Koıvoßou入iou tпи Tpitף 8 Октш－

 oiou，о́tav о про́عठро́ tou к．Pierre
 toupyoú＇Epzuvas к．CURIEN，otou

 Bpiou．
¿тіс 7 Октшßріои，праүиатолопй θ пкє ото Palais de l＇Europe то \sum иито́бьо

 ठи̇o кирішৎ $\theta \dot{\mu} \mu a t a$.
－Н ßıоипхаиıкп் поо́кддоп，о ро்доя $\delta \eta \lambda \alpha \delta \dot{\eta}$ тทৎ ßıounxaviac oє oxغ்on
 autó oו бúveठןоı абхо $\lambda \dot{\eta} \theta \eta$ паи то прші．

 ठpaön touc otпv araoxó̀non．Me то $\theta \dot{\varepsilon} \mu$ а аutó o o oúveठpol aбxo－ $\lambda \dot{\eta} \theta \eta к а и$ то ато்увица．

 خоүшш้．

H BIOMHXANIKH ПРОК

 кои Koıvoßou入iou к．Pierre Pflimlin，o

 Pflimlin，то аиєрıкаvıко̇ поо்үрациа S．D．I．

 теХиолоүıкท்я полıтıкท்я．Eivaı amapaitn－ то，віпє о к．Pflimlin，va ava $\mu \varepsilon ı x \theta$ вi η коıи்

 vémv texvòoyïu otnv koıvढvia kaı поопаито́s отпи araoxö̀noŋ．Suvexi－

 олоіо θ а о оүаvш日ві η коוレท் arávтŋon

 غ́peuva kaı тп ßıоипхаvıкท் каıvотоніа． Tغं $\lambda о \varsigma, ~ о ~ к . ~ P f l i m l i n ~ \delta \varepsilon v ~ a r \varepsilon ̇ к \lambda \varepsilon ı \sigma \varepsilon ~ т \eta ~$

 $\pi ⿰ 冫 欠$

 Burke，о опоioc афои் аvaфغ́pӨпкк बтŋv

 аитаүшviotıкท் тŋৎ ıкаvótทта．

О про́вброс тпя Еиршпаїкท்я Епітро－ пท்ऽ к．Jacques Delors，tóviǫ ótı η

 тŋऽ avepyiac．H Eupïrtn，a＇auto to опияio，غ̇хоиtac va $\delta ı a \lambda \dot{\varepsilon} \xi \varepsilon ı$ avá $\mu \varepsilon \sigma \alpha$ отои пробтатвитוбио каı тпи пробарио－

Avàu̇outac о к．Delors tic emirtio－

 $\eta \pi \varepsilon i \rho \alpha ~ т \omega \nu$ ठи்о пропүои́ $\mu \varepsilon \nu \omega \nu \tau \varepsilon \chi \cup o-$

 บпобтท่рı६є тпи аváүкп пробариоүท்я

Опшऽ віпє о к．Delors，yıa тпи avákтŋon tท¢ аитаүшviotiкӧтптая，η
 тонвія пои афорои்：

 терıkท்ৎ aүopás xшpis oúvopa

 тПऽ техио入оүіас．
Та $\mu \varepsilon ̇ т \rho а ~ п о и ~ п р о т \varepsilon і v \varepsilon ı ~ \eta ~ K о ı v о ் т п т а, ~$

TA ГEГONOTA THE «EB $\triangle O M A \triangle A \Sigma$ NESN TEXNO＾OГISN»

－5－10 окт Ω BPIOY：
EK＠E \mathcal{H} ГIA TO $\triangle I A \Sigma T H M A ~ K A I ~ T I \Sigma ~$ NEE TEXNO ЛOГIE Σ ．
 опоіоия о Eupwraïко́s Opyavioдós \triangle ıа－

 mapovoiaoav ta हmiteúyमatá touc．Mov－
 $\mu і к \dot{\omega} \nu \quad$ врүаотпрі $\omega v, \quad \mu \varepsilon \tau \varepsilon \omega \rho о \lambda о ү к к о і ~$

 video－סіоко，то аитокіипто тои $\mu \dot{\varepsilon} \lambda \lambda$ оv． тоя，то аитокіипто Xшрія тио́v nои
 μ ата CAD，то үрафвіо тои $\mu \dot{\varepsilon} \lambda \lambda$ оитоৎ，
 avamท்pouc，ท்oav $\mu \varepsilon \rho ı k \dot{\alpha}$ aró та єкӨ்்－ $\mu a t a$ ．H $\varepsilon \lambda \lambda \eta$ nuikn் etaıpia BIORYL，

 vòоүіa¢ к．$\lambda \pi$ ．

－ 7 OKTתBPIOY：

ЕҮМПОЕІО «ЕҮРЯПН 2000，

 тwv aסuvauiù tทs Eupétins otov

> 8 OKTתBPIOY：
> EYZHTHEH ETHN OAOME－

NEIA TOY EYPSIA•I•KOY KOINOBOYNIOY TIA TIE NEE TEXNO 1 OFIEE．

 тпи О λ оиغ் $\lambda \varepsilon ı a$ tou Eupwtaïкои́ Koıvo－
 －EkӨron Poniatowski：H amávtnon tņ
 on
－EkӨron Munch：$\Delta \eta$ uıoupyia ε vóc

－EkӨron Longuet：Avioótntes тexvo－
 тйv－$\mu \varepsilon \lambda \dot{\omega} \nu$ тпя Eupwraïкク்я Koıvó－ тытая
－EkӨzan Metten：Проß入nиата пои

－EkӨron Ciancaglini：Eпитtüorıc twv
 Koivȯtทta
 $\tau \omega \nu$ v $\varepsilon \omega \nu \tau \varepsilon x v o \lambda o \gamma i \omega ் \nu$
－EkӨzan Salisch：Koıvwuıkn் हтiסpaon
 yuvaikac
－EkӨzon McMahon：Nè ε ，texuo
 отท̀uata tnc Koivótntac
－EkӨzon Linkohr：$\Delta \eta \mu$ ıииpyia Г ρ－ фвіои tou Eupwtaïкoú Koıvoßou入iou

－EkӨzon Wijsenbeek：Пропүцд̇vec тєX－

－EkӨzan Barbarella：X $\rho \eta \mu a r o \delta o ̇ t \eta o n ~$
 үрациадт ωv.

 $\psi \eta \varsigma, ~ \varepsilon i v a ı ~ т о ~ п о о ́ ү \rho а \mu \mu а ~ E S P R I T ~(\delta ~$ С．Г．O． 26 бт σ ті̀ η Е．O．K．）वто опо
 Eupwraïкñя＇Epعuvac．

О к．Delors，טпоүра́ $\mu \mu ı \varepsilon \varepsilon$ тп опџ
 $\lambda \dot{\eta} \psi \eta \varsigma ~ a r о ф \dot{\sigma} \sigma \varepsilon \omega v$ otnv E．O．K．\sum^{\prime} av

 тойс проүрд́ $\mu \mu \boldsymbol{\alpha т о , ~ п о и ~} Ө \alpha$ апо λ हi onusio avaфopác үıa tic घाাऐ

 клабוкц்้ проүра $\mu \mu \dot{\tau} \tau \nu$ ота опо

 $\mu \dot{\varepsilon} \lambda \eta$ tnc E．O．K．
$\Sigma_{\text {то }}$ опивіо वuто́，о к．Delors uпधvt

 по $\lambda \lambda \dot{\alpha} \varepsilon \cup \rho \omega \pi а і ̈ к \dot{\alpha}$ кра́тך поט $\delta \varepsilon v$ घiv
 Avotpia，η E λ ßetia к．$\dot{\text { a }}$ ．
 про்єброс тпя Еиршпаїкйс Епוтропй
 про́бфорои коוvшvikou̇ ठıа入óүou，пр

 к $\lambda і \mu \alpha$ ठпиıоирүıкท்ৎ боиعрүабіас．Про

 autท்s．

OI ПPOTAEEIE ENOZ SUPER MANAGER

H हाıtáxuvon т $\omega \nu$ texvo入оүıкјं

 пробш்т ωv ，т $\omega \nu$ проїӧит $\omega \nu$ каı т

 Benedett，поо́عסроৎ каı үعviкóc ס Өuvtท்ৎ тп¢ Olivetti，вinє ótı ппүव்̧̧ou аиаүкаıотптея үіа：
 vотонıшे ов ßıоипхаиікท் праү тіко்тпта
 крат $\dot{\omega}$ ．
－Опшс віпє о к．de Benedetti，
 би入入оүıко́ каı о́хı атоцıко் каı η к кіца

 каıvоторіа бє ßıрŋха⿱וкท் праүцатıко́тŋта＂

 бıакрірета！о к．Паvaүıњ்тŋя Мариріая．

пои проолацßáveı віvaı паүкооцішь

 $\lambda a \gamma \dot{\eta}$ каı тпи прооӨ்்кп．техvoүvшơiac．

 оптюс та проүра́ $\mu \mu \alpha т а$ JET，ESPRIT， AIRBUS kaı ARIANE．
ミuvexiکоитаৎ о про்єброৎ тпৎ Olivetti，
 $\mu \varepsilon ү \dot{\alpha} \lambda$ ои проүра́ $\mu \mu а т о \varsigma, ~ т о ~ о п о і о ~ \theta а ~$

 $\mu а т о \varsigma . ~ ' О п \omega \varsigma ~ и п о ү \rho \dot{\alpha} \mu \mu ı \sigma \varepsilon$ ，о аиӨры்лı－ vоৎ пара́yоитац апот $\lambda \lambda$ ві тך «от $\rho \alpha т \eta ү ı к \dot{~}$

 عоwт

 kOIVWVIk $\dot{\varsigma}$ ठо $\dot{\varepsilon}$ ¢．

Jonquieres，twv Financial Times，tóviog о́тı то ки́рı૦ Xарактпрıотıко каı то

 autó عivaı：
－о катакєриатібно́ऽ тпऽ عбштврікท்ऽ тпऽ аүopás кaı

 иクтוкш்้ סрабтпріотท்т ωv ，$\mu \varepsilon$ апо－
 проопаӨвіш каı хрпиатıкши по்－

о்т $\mu \varepsilon \underline{\sigma u \mu \varphi \dot{\rho} р \varepsilon ı} \operatorname{va~үv\omega \rho i\zeta \omega "~}$

 бто KEP $\Delta O \Sigma \mu$ оu．＂

KEPMDE
н vє́a бє $\mu о \rho \varphi \emptyset \dot{\eta} к а и ~ \sigma \dot{\lambda \lambda \lambda \eta \psi \eta ~}$ оикогодикй вфпивріба．

ETKYPH

 vпакоиєı а६ьо̇нота бе профорікєя，
 －Ek日eanc Texvo入oyiac кaı Вıабті்цатоя．
$\rho \omega v$.
乏av характпрıттіко் пара́ठвıуиа，о к．

 Spaotпріо́тптес．
 sivaı amapaitntn η avaסıá $\rho \theta$ pwon tns

 ठпиıoupyia «हvıaiou вирытаїкои хшырои غ́peuvac каı texvo入оүіас＂．

 oouv oav по $\lambda \lambda a \pi \lambda a \sigma$ абтєє，yıa тпи
 toıа пооүра́ $\mu \mu$ ата віvaı то ESPRIT үıа тпи П入профорıкท்（（бєऽ С．Г．О．26）каı то
 29）．

Гіа то а́ $\mu \varepsilon \sigma о ~ \mu \dot{\varepsilon} \lambda \lambda$ ov，о к．Boden
 इuमßou入iou $\omega \varsigma$ ع६ท்̧：
－Eүкріón тои vغ́ou проүра́ $\mu \mu$ атос． $\pi \lambda$ aıiou үıа та غ̇тท 1987－1991，о́пои өа हпаvarробסוорıбтои்ン оו бто́хо каı оו протераı́тптеऽ тПৎ Koıvó－

－Aúछnon twv moтїбعшv tou koivo－ тікои் проӥпо入оүוбцои் үІа тпレ غ́peuva kaı тпи teरuodoyia arȯ 3% бع 6\％тоט бטvó入ou t ω U koivo－ тік $\dot{\nu}$ ठanavш்v．

 бє трітєऽ єиршпаїкє่ऽ Х $\dot{\omega} \rho \varepsilon \varsigma$.
О к．Boden，ката入ṅүoutac tóvioe，о̇тı

 тпта $\lambda \dot{\eta} \psi \eta \varsigma$ апофд்бع $\omega \nu$ бто $\sum \cup \mu \beta$ ой $\lambda ı$ ．

H ГENIKH EYZHTHEH

 Өnбع，по入入оі бúvعסроı пท்pav бıaסохıка

 $\varepsilon \cup \delta ı а ф \dot{\rho} \rho о \cup \cup$ каı $\mu \varepsilon$ поıа крıтท்рıа θ а үіиعı η घாi入oүทं touc；＂

 техио入оүїи пои θa हпाт $\dot{\varepsilon} \psi o u v ~$ отпи Eup $\dot{\pi} \eta \eta$ va عпıßı̈бяı окоио－
 пїєı тои виторıко் аитаүшиıоио́ тши НПА каı тŋऽ Iantuviac，ипе－ отпріхӨпкє ато் тои عиршßоилеитท் к．Turner．

 Mathias Hinterscheid，паратท்pпоє

－O каӨпүпт்்s к．Rudolf Boehm，

 ото вбштєрıко் тךऽ，о̇бо каı $\mu \varepsilon$ тоט Tріто Kӧбио．
－O к．Michael Watson tпc I．C．L，

 $\mu \varepsilon$ viouv otn סпиıoupyia عunuepiac．

－O घиршßоидвutท்ऽ к．Glyn Ford， бטนфய்טךбє，паратпри்vtac ótı η हпі入оүท் т $\tau \nu$ пооүра $\mu \alpha \dot{\tau} \omega \nu \quad \theta a$

 тпऽ поьотттас گшท்я．
 ITALTEL，kupia Marisa Belisario， оו Eиршлаїкєє Bıи
 отои отратпүікท்я опиабіає танг்а $\tau \omega v$ тп $\lambda \varepsilon \pi i k o i v \omega v i \omega u v$ ．Гia va avti－
 рıкаขıкய்้ каı Іапшขıкш்้ ко入об－

H aivodoc Октшßpiov тоv

Evpшпаїкоі Koivoßovגiov，вixe

 афıрро்்v，прغ்пєı va ouvevய்oouv т

 λ_{1} үо்тєра а́тоиа отпи параүшүท் ко
 घivaı ठüのко入o vá $\beta \rho \varepsilon Ө \circ$ ouv avá $\mu \varepsilon 0$
 $\mu o ́ v \omega \nu$ ．Парव் $\lambda \lambda \eta \lambda \alpha$ о́ $\mu \omega \varsigma$ ，прєпє va ß

－О єкппо̇бштоৎ тп̧ Siemens，к

 $\varepsilon ф а \rho \mu о ү \dot{\eta} \tau \omega \nu$ v $\varepsilon \omega \nu$ т $\varepsilon \chi v o \lambda о ү ш \dot{\omega}$

 паїкท்ऽ аүора́ৎ，бєv прغ்пєı vo عрипиعитві оаи «тоіхоৎ проотатви

 Evpwraioı aбтроvaútяৎ：о Герио vós к．Ulf Mierbold，пои то 198
 кavıкoú Space Lab кaı о Гव் $\lambda \lambda$ о к．Patric Baudry，пои поо́бфато
 Опшऽ віпє о к．Mierbold，ol ouv

 va праүнатопоıŋӨой отп үп．＇Evo ठıабтпиıко் врүабтท்рıo，θ а про

 пара́бвıүиа тп ठuvaто́тпта като
 та ठıабтпикка пооүра́ $\mu \mu$ ата $\theta 0$

 аито́ η Kоוvótทта пре்пєı va tou б்்бєı поотєраіо்тทта．
－Σ то оо̀ло тпऽ ßıотехио入оүіac，avo фغ́рӨпкаи ол к．к．Scell каı Richon nier．О прш்тоৎ عivaı uпяи்Өuvo
 ßıтедхио入оүіас ото Ivoтіtои̇то Max

Plank tп¢ Δ ．Гع $\rho \mu a v i a \varsigma ~ к a ı ~ о ~ \delta \varepsilon v ं-~$ тероৎ हmatnjuovac каı бuyүpa－
 отія Н．П．А．то $1 / 4$ тои а λ коо் λ каı то $1 / 3$ тпऽ ఢа́xapп¢ пара́үоитаı xápn бтך ßıотєхvo入oyia．
 тои тро́то，घіvaı ката $25 \% \phi \theta \eta$－ vо்тєр апо் тпи параүо́ $\mu \varepsilon \cup \eta ~ \mu \varepsilon$
 каı үıа тıৎ хршотıкє́ оибієৎ，ӧтшৎ каı үıа та фápuaka．

 ther Bröder，טாعvӨن́uıøє ótı yıa та проүрд́ $\mu \mu$ тта лои хрпиатобо் тПбє η E．T．E．бє по入入оט்я то $\mu \varepsilon$ ія， غрعuvas（апо் тп фариаквитікท் $\omega \varsigma$ тп үعшрүіа каı aró тп роило－ тікท் $\omega \varsigma$ тПט тeגvo入oyia tou auto－ кıทท்тои）ठıaṫ̇Өпкаи 41 єкатоции்－ рıя ECU то 1981， 170 єк．ECU то 1983 каı 250 кк．ECU то 1984．Autó то побо்，६єпєрд்отпкє ท்ठŋ ката்
 Tou 1985. О бuүүрафغ்ac к．Junk，uпобтท்－ مı६६ тŋu aváykn ípoưņ عvós घиршпаїкой Ivotitoútou yia tŋv

 Veil，ипобтท்pı६ॄ о́тı η Kоוvótทта

 $\mu а т о п о ו п \mu \varepsilon ் v \omega \nu ~ \varepsilon \rho ү а \lambda \varepsilon ו о \mu \eta \chi а v \dot{\omega .}$
－О про́عброя тои EӨviкой Iסри́ца－

 коוvov่ проүрад $\mu \mu$ атоऽ，то опоіо

 $\dot{\alpha} \lambda \lambda \alpha$ ．
 про́єठроц тпऽ єпттопп்ऽ к．Delors，єпा－

 $\lambda о ү \dot{\omega}$
 aүopás

О к．Delors，паратท்рŋбє $\mu \varepsilon \tau \alpha \S \dot{\cup}$

 тои Evршпаїкой Проүра́циатоя вреv－
 пцоӥполоүібцои்．

EПIへOГO乏

 отıа аүора́，а६ъодоүо́тато впоттпиоиוко் ठиvaцıко் каı аркєтєє прштопо்ряৎ ßıо－ $\mu \eta$ xaviec．Fıa va avtı $\mu \varepsilon t \omega \pi i o \varepsilon ı$ in ßıo－ $\mu \eta \chi a v i к \eta \dot{~ п о о ் к \lambda \eta \sigma \eta, ~ \dot{\omega} \sigma \tau \varepsilon ~ v a ~} \varepsilon \xi а \sigma ф а \lambda i-$
 про்обо каı виПиعріа，прغ்пєı va аદ̧ı－
 үІкд．
 yovótos aró ó入ous tous Eupwraious，
 «Evpürt 2000»．Е६＇aıtiac autш் пои

 цоvaбıко́．

MEPAIE H vह́a бє $\mu о \rho \varphi \dot{\eta} \kappa а \iota ~ \sigma и ́ \lambda \lambda \eta \psi \eta$

EГKYPH

Evé のuvexiそ̧taı каı

 o Michael Dempsey бкıаүрафві тп бицßодй т ω ย عтaipićs software $\boldsymbol{\sigma}$＇avtiju．
KEIMENO： MICHAEL DEMPSEY AПODOEH ETA EヘAHNIKA： AYF．TEIPIMSKOE

Otav o Calileo，о прїтос סıаवтпиико́я

 va ßuӨiそetaı बтทи атдо́テфаıра тои

H emıtuxia tou a̧̧iac 800 єкато $\mu \mathrm{v}$－

 tous aıのПтท்ן

 va ßpouv пєוотıкє́ ठıкаıодоүієс．

 NASA，otnv Kàıфópvia．Kävoutas，

 $\mu \eta \tau ו к \dot{\omega} \nu \delta \varepsilon \delta о \mu \dot{\varepsilon} \nu \omega \nu$ Nastram，то тип் μ
 витєюрієя пои віхє апоктท்бєı үıа va

 $\dot{\eta} \theta \varepsilon \lambda a v$ va үiveı фuaikn் пооооноiшon，va

 tou $\Delta \mathrm{ia»} ,\mathrm{параб́غх} \mathrm{\varepsilon таı} \mathrm{o} \mathrm{Terry} \mathrm{Holst}$,

 каं то пвіраца，акӧа каı тпи періптшоп пои η практıкп் єфариоүท் віvaı то́бо

 ópyava апо் ка்поь перıßд̀д入入ои пои
 аитוиعт $\omega \pi i \sigma \varepsilon$ ．

O John Givens，uாזu் θ uvos yia tnu
 $\pi \lambda \omega \sigma$ tou software $\sigma \varepsilon \dot{\text { ö }} \lambda \varepsilon \varsigma$ тіৎ птих $\dot{\varepsilon} \varsigma$

 vou kaı ко்бtouc．

$\eta \lambda_{ı}$ кой бuбтท்цатоц＂．
H кá ψ ои $\lambda \alpha$ тои Galileo，θ a anoonaо

 $\mu \varepsilon$ тахи்тпта $115.000 \mu ı \lambda i \omega v$ тпи $\dot{\omega} \rho$

 то хроvıко́ ठıäбтпиа апаıтвітаı үıа пยра́бєı о Galileo пои пєрıкляієı
 $\varepsilon \varepsilon \omega \tau \varepsilon \rho ı к \dot{~ a т \mu o ́ \sigma \phi a ı \rho a, ~ v a ~ \phi \theta \dot{\sigma} \sigma \varepsilon!~ o ~}$
 кат $\dot{\alpha} \lambda \lambda \eta \lambda \eta$ тахи́тпта $\dot{\omega} \sigma т \varepsilon$ va μ торо
 $\theta \omega \rho$ а́кıō ато́ áv $Ө$ рака，o＇autó

 олоклnршӨо⿱亠乂 amó та ópyava та пр

Tпu $\dot{\omega} \rho \alpha$ поט $\mu \varepsilon \tau \rho \dot{\alpha} \varepsilon 1$ in $\chi \eta \mu \mu$

 то 1961．Н отабıобоо μ іа тоט，биขย̇пєоє $\mu \varepsilon$
 μ ata tou tè̀ ous tḩ סekaetiac tou＇60

 on tov इúpravtos，oav tпu mo ouvap．

 غ́peuva tทৎ Афроठitn¢»，入غ̇єı o Givens，

 пршто́үишро тоото．«О Кодо́цßоя，аиа－
 avӨрїпоис．＇Eva про́үра $\mu \mu a$ ，ӧ $\mu \omega \varsigma$ ，баи

 форіє¢ үıа тпи пієбп，тп Өعриокрабіа к

 апо் аито் пои о Givens $\theta \varepsilon \omega \rho \varepsilon і$ «т

 $\dot{\text { घ́үıve ото Ames } \theta \text { а апобвıхӨві єпарк }}$

 єрүаотпріои＂．
 апотúxघı ßабік $\dot{\alpha}$ отท้ апобто入ǹ тои＂，
 тоט oтทV «тера̇бтіа побо்тทта software»， пои хрпоाиотой $Ө$ пке отทи параүшүท่

 типопоппиغ̇vа проүра́циата，а入入д η
 нou घivaı ठüбко入o va ßpeधzi ह̀va апобєкто் апо் о̀доис про́типо＂，ододоү६і

 пєріл λ окєৎ аvȧүкє¢．

 фариоүш̈v $\mu \varepsilon$ software o Givens kaı ol
 NASA rov aфоройv tov пứpau入о－форદ̇а пои хрпбінотопй пкє ото поојүрациа Galileo，$\alpha \lambda \lambda \dot{\alpha}$ каı $\sigma \varepsilon \dot{\alpha} \lambda \lambda \alpha$ $\varepsilon \xi^{\prime}$ ioou накро்тvoа проүра́यиата．Та і̀ло каı au६avȯuzva фортіа тои，то்о η NASA， о́оо каı то Пеvтд́үшvo（аutó то телеитаіо

 прошатıкท் סúvaun yıa va סıaфúyouv anó

 тои ठıаवтпиікой $\lambda \varepsilon \omega ф о \rho \varepsilon i o u, ~ \theta a ~ a v ६ \eta \theta \varepsilon i$ кат 30% ото $\mu \dot{\lambda} \lambda \lambda$ о⿱

 vtaı otn Xoávn tou kivntinjoa，ótav autós

 CFD＂．

 тп $\mu \dot{\top} \tau \omega \nu \tau \omega \nu$ azpoпìàv $\omega \nu$ tnc Boeing，
 то поо єпібо६о пєбіо т ти סıаплаиптıкшँ

 عivaı to va фtiáそouv kàtı kal va סouv ta

бто $\mu \dot{\varepsilon} \tau \alpha \lambda \lambda$ o．Ka入д $\dot{\alpha}$ हivaı ta $\sigma \chi \dot{\varepsilon} \delta ı a ~ \sigma т \alpha$ Xартıд்，a $\lambda \lambda \dot{\alpha} . . . », \lambda \dot{\varepsilon} \varepsilon ı, \delta \varepsilon i x v o v t a \varsigma ~ т а ~$

 то Nautıко тши НПА，аєроока́фп $\varepsilon \rho \varepsilon \cup$－

 $\dot{\varepsilon} \delta \omega \sigma \varepsilon$ о ипєр－טподоүוotñ Cray ths ouáठaç tou Holst．

Méxpı to 1987，η о $\mu \dot{\delta} \delta$ a tou Holst otnu
 ипо入оүібтท் тои кӧбцои，үіа va вүката－

 oпс．Aкö $\mu \eta$ ，غ́vac Cray 2 avaцд́vetaı va парабо日ві бúvtopa oтпи Ames．O Cray 2，т $\rho \dot{\text { x́хоитаৎ то software tou Unix } 5, \theta \text { a }}$

 μ ои̇ऽ epyaóiac．
Σ копо்я тп¢ NASA，घivaı va $\delta \eta \mu ı$ оир

 ouov́c єкто́s NASA．Гıa va үiveı кȧtı

 Bретаиікȯ бúatпиа Newcastle Con－ nection．Ако́ $\mu \eta$ ，טாа́рхєı η бкغ $\psi \eta$ үıa тך סпиıoupyia tou Common Graphics Servi－

 CFD．

 $\mu \varepsilon \dot{\rho} \varepsilon ı ~ \eta$ NASA．इкıаүрафш்итая тія
 Ames，o ouvepyátitc tou Holst，Frank
 оицло்өו CFD отпи Ianwvia，о́тו η

 aعpoonjpayץa．Av кaı η Ames $\dot{\varepsilon} \chi \varepsilon ı ~ \delta u ́ o ~$ апо் тıৎ $\mu \varepsilon ү а \lambda \dot{\tau} т \varepsilon \rho \varepsilon \varsigma$, паүко́бнıа，аєрооп்． раүүєৎ，пои ठєото்そоии ото хш்ро тои

 ипо入оүıотїv．इтпи періптшоп тои Gali－

$\Sigma \tau \eta v \dot{\alpha} \lambda \lambda \eta \dot{\alpha} \kappa \rho \eta$ тоט At $\lambda a v t i k o u ́, ~ о ~$

 апотеляі Хриоофо́ра ппүґ் үıа то Bрета－ vikả software houses nou हixav tnu

 проүра́ $\mu \mu т о \varsigma . ~ М о ̈ \lambda ı \varsigma ~ \varepsilon к ф \rho а ́ \sigma т п к є ~ \eta ~$

 ає трохıа́，η Eupwпаїкท் Yппребia $\triangle ı а$－

 $\dot{\varepsilon}$ Хоитаৎ пávta ката́ vou тŋи mӨavótnta
 oع т poxiá．

Н поо опиаитıкп் Bретаиıкท் втаıріа， пои абхо入вітаı $\mu \varepsilon$ то ठıабтпикко soft－ ware，sivaı η Logica．EXoutac，akoviaعı

 Giotto，nou θ a пробєүүioधı tou xpóvou тои коцท்т η tou Halley，η Logica $\dot{\varepsilon} \chi \varepsilon \frac{1}{\text { ү }} \rho \dot{\alpha}$
 oto software．

 ठıaбтпиккой ота θ нои Columbus，пои
 H M．Bpetavia，θ a ouveıбфغ $\rho \varepsilon$ т то 15%
 $\mu \varepsilon ̇ \sigma \omega$ twv Marconi kaı British Aerospace

 Cobham tou Surrey．

H ESA，$\dot{\varepsilon} \chi \varepsilon ı ~ \varepsilon m i \lambda \dot{\varepsilon} \xi \varepsilon ı ~ \tau а ~ \tau \dot{\varepsilon \sigma \sigma \varepsilon \rho a ~}$ тиท̆цата тои пооүра́ $\mu \mu$ атос Columbus，

 $\dot{\varepsilon} \xi$ оба，عivaı $\beta \dot{\varepsilon} \beta a ı \alpha$ то́oo $\mu \varepsilon \gamma \dot{\text { à }} \lambda \alpha$ ，поט

 практıкท்ৎ опоиסаıо்тптаৎ，аитغ́¢ оו вүка－ табтáoॄı̧ عivaı：
－Evas xш́pos uпó пієбп，пои θ а
 ро по $л \lambda \dot{\omega} \nu$ крат $\dot{\omega} \nu$ ．
－Mia $\pi \lambda \alpha \tau ф \dot{\rho} \rho \mu \alpha$ б ε ع $\lambda \varepsilon \dot{\theta} \theta \varepsilon \rho \eta ~ т \rho о х ı \dot{\alpha}$.

 ठıабтпикко் бтаӨио்．
－Evac xш்pos aveфобıa⿱㇒冋ovi．Σ_{τ}
 $\varepsilon \lambda \varepsilon \dot{\theta} \theta \varepsilon \rho \eta$ трохıа́，пїш апо் то єпаvбр

 aбtpovaútec．

H British Aerospace，عivaı हпाкєфа入r тои consortium tทৎ ESA поט $\mu \varepsilon \lambda \varepsilon \tau \dot{\alpha} \pi$
 пара́ $\lambda \lambda \eta \lambda a, \quad \varepsilon \xi \varepsilon т \dot{\alpha} \zeta \varepsilon 1 \quad$ т $\eta \quad \delta u v a т о \dot{т} \eta t$
 т оохı $\dot{\alpha}$. H Logica，aró т $\eta v \dot{\alpha} \lambda \lambda \eta$ ，$\dot{\varepsilon}$

 Evpштаїкой бıабтпиıкои் ота $\theta \mu$ о்．

O Pat Norris，סıєuӨuviņ tou mark ting tnc Logica，$\varepsilon \in \eta \gamma \varepsilon i$ ótı η avá $\mu \varepsilon ı \xi \eta \pi$

 тпऽ үוа то interfacing avӨрш̈поט－טпо入ो ҮIOTñ＂．

 бта日но́я тпऽ ESA va вүкатаота日

 о́пшऽ о хш்роऽ аvá $\mu \varepsilon \sigma \alpha$ ота хшрібцат тоט ерүабтпріои，пои прєппєı va про λ_{λ} $\phi \theta$ oùv＂．

 бıäoтпиа，пробеүүіотпкє үıа va $\mu \varepsilon т а \delta і$

 Byron Lichtenberg oav oúpßou入
 Norris．
Оı прйтоı Вретаvoi пои $\theta \alpha$ ßргӨоі ото סıäのтпиа，हivaı סúo aоt
 трохіа் عvós отратіштікой סорифо́ро

Tand
 NK KOAIOПOYムOL
 Radio Shaek

Movtغ̇ло 100016 Bit $\mu \varepsilon 6$ проүра́циата каı 100\％бицßато் $\mu \varepsilon$ tov IBM． Avàخuon oӨóvns 640X200

3．Аитоцатоц غ்̀عүхоऽ пєр．ठокш்v．
4．Пغ்бıえа－пعठьлобокоі．

8．Hठŋ $\delta о u \lambda \varepsilon u ̇ o u v ~ \sigma \varepsilon ~ 20 ~ \tau \varepsilon x v . ~ ү p a \varphi \varepsilon i a . ~$

Tıиn 360.000 عाб̈кn проочора

Ta проурариата трехоuv σ° oha ta pnxavnцата

Amstrad CPC－ 6128
Schneider CPC－ 6128
Amstrad CPC－ 464
Schneider CPC－ 464
Tipn ano 59.000

Monitors	K
Ектипитغ̇ऽ	\triangle Ібкغ่т¢S
Plotters	Meגavotaivies
Disk Drives	Bıß入ia

Movtغ่̇о 4， 8 Bit $\mu \varepsilon 2$ DISK
DRIVES．Пробغ்бборая Z－80
4 MHZ

Проүра́ μ ата апоӨท்кпऽ

Tipn 179.000

CoCo 64K
Tipn 39.000

Ечариоүغ்ऽ МıбӨобобіа ＾оүוбтікท் Абүа入ıбтіка்

Пє入а่тєऽ
－PARKING MIPOETA ITO KATAETHMA MAI－APTIO OPTAN Ω MENO SERVICE TIA ONH THN EN＾ADA
prio tou xpóvou．Autoi θ a ava $\lambda \dot{\alpha} \beta$ ouv

 єрүоиоиıкш் параүо்итшv．
 то वи்vо入о тои проүра́ $\mu \mu$ тос Columbus，

 Bретаviaç otпv оцáठа каı таитӧхроva оı عוסוкоі ото software．＇Etol，о ро́̀ос $\mu \mathrm{as}$ ठev घivaı opıवमévoç＂．

 үıаті та проїövта $\mu \alpha<$ бıакріиеı η

 үıа о̀خо то про́үра μ д»．
To «廿шноти்рı» tn¢ Logica otn סıaбтп－ $\mu ı n \dot{n} \beta ı \mu \eta x a v i a$ عivaı to software yıa то

 －О

 тро́пои параүшүท்я тои amaıтой $\mu \varepsilon$ оои software．«Eivaı عutè $\dot{\omega} \varsigma$ v $\dot{\varepsilon} \alpha \eta 1 \delta \dot{\varepsilon} \alpha$, va

 рой $\mu \varepsilon$ va пои̇ $\mu \varepsilon$ ，घіvaı о́тı прغ்ாєı va

 апо் то є̇ठафос，η Logica θ к катор $\theta \dot{\omega} \sigma \varepsilon ı$

 ठıабтпиккш் вфариоүш்v．इто ота μ о́， ßं்ßaıa，θa uта́pхєı $\dot{\varepsilon} v a$ LAN（топико் ठіктио）$\mu \varepsilon$ avoxض் $\sigma \varepsilon \quad \lambda \dot{a} \theta \eta$ ．：О $\mu \omega \varsigma$ ， avaүкаотıка́ θ а ита́рхоuv каı вфарио－

 aпaitñaعıc autoú tou oxeסiou＂．

O Norris，$\sigma \cup \sigma \chi \varepsilon т i \zeta \varepsilon ı ~ т \eta \nu ~ \pi а \rho \varepsilon \lambda \theta о и ̆ \sigma a ~$
 $\mu \varepsilon$ то $\mu \dot{\varepsilon} \lambda \lambda$ ои тп̧ етаıріас，отıя סıaбтп－

 ò $\lambda \alpha$ ta projects tᄁ¢ ESA．H Logica，$\theta \alpha$

 va avartú̧ıı η ESA．
«Парабобıака́，η ESA прошӨои்бє

 oтп＂，oпиعıш்veı o Norris．＂To غ̇volwӨav

 та，θ व фроviiaعı $\dot{\omega} \sigma t \varepsilon \eta \mu i \alpha \mu \varepsilon \lambda \dot{\varepsilon} \tau \eta ~ v a ~$ ठiveı ßäon वe перıбоótepeऽ غ́peuvec．

 ка́»，прооӨ்̇tяı о Norris，«каı $\mu \varepsilon \tau \dot{\alpha}$ то

О $\rho \cup \theta \mu$ о́с $\mu \varepsilon$ тои опоіо аиапти̇х $Ө \eta к \varepsilon \eta$ ठıадтпикк் غ்pعuva，sivaı ठuvató va $\varepsilon к т і \mu \eta \theta \varepsilon i \quad$ ов $\mu i \alpha \dot{\alpha} \dot{\alpha} \lambda \eta$ eppaбia nou аv $\dot{\varepsilon} \lambda \alpha \beta \varepsilon \eta$ Logica σ＇वuто́ тои то $\mu \dot{\varepsilon} \alpha$ ．

 вфариоүє் пои апаıтойv סорифорıкі $\mu \varepsilon \tau \dot{\alpha} \delta o \sigma \eta$ on $\mu \dot{\tau} \tau \omega v$ ．

 $\dot{\text { ä }} \lambda$ 入o＂，ε mơnuaiveı o Norris．Autó no

 проß入й $\mu \alpha т а$.

Eठ்ं μ raiveı η Logica．H Intelsat，

 үוбтıкó oúatпй үıa va xeıpıotei тo періплоко про́ß \quad пиа тпऽ апо்סоопऽ тои
 סopuфópouc．H ouveıoфopá thc Logica o＇auto to ov̇otnua，हivaı μ ia ßáon
 кá $\theta \varepsilon$ ठорифо́рои оє трохіа́．

Еифаvioтทкаи каı $\dot{\alpha} \lambda \lambda$ о॰ п $\varepsilon \lambda \dot{\alpha} \tau \varepsilon \varsigma, ~ \mu \varepsilon т \dot{~}$ тך
 бعıৎ，поu va ع६umпретоüv òخouc touc $\varepsilon v \delta ı a \phi \varepsilon \rho \dot{\mu} \mu \varepsilon v o u \varrho$ opүaviouov̇ৎ kaı va
 mainframe．

 ware үıа по $\lambda \lambda \dot{\alpha}$ х ро́via акӧип．

ЕКПОIHEIE

6 TEMAXISN $\tau \omega \nu$ үv $\omega \sigma \boldsymbol{\omega} \omega \dot{\nu}$ GENERAL ELECTRIC TermiNet Matrix Printers

GENERAL ELECTRIC

TEPMATIKA \＆EKTYПתTE乏 ПOIOTHTO乏

Апо̇ Stock єкпоıо́vтаı QUME DISK DRIVE

AANKA A．E．EYPIПIDOY 7， 10561 AOHNA，
 TH＾．：3225469－3251454

ASPECO HOME COMPUTERS

Aү $\alpha \pi \eta$ тоі φ ілоı，ANOI三AME ккı $\sigma \alpha \varsigma ~ \pi \varepsilon \rho ı \mu \varepsilon ் v o u \mu \varepsilon ~ к \alpha ı ~$ ото хळ்ро тои software．

ПРОЕФОРА．．．

Мє к $\dot{\theta} \theta \varepsilon \alpha \gamma о \rho \dot{\alpha}$ AMSTRAD CPC $464 \Delta \Omega P E A N \pi о \lambda \lambda \dot{\alpha}$ $\pi \rho о ү \rho \dot{\alpha} \mu \mu \alpha т \alpha$ ．Eтions Uт $\dot{\alpha} \rho \chi$ оuv ó $\lambda \alpha$ т α т $\rho о ү \rho \dot{\alpha} \mu \mu \alpha т \alpha$ үı α SPECTRUM к α ı COMMODORE．
 тои $\varepsilon \pi \alpha \gamma \gamma \varepsilon \lambda \mu \alpha т і к о и ̆ ~ s o f t w a r e ~ \gamma ı \alpha ~ t o v ~ A m s t r a d ~ 6128 . ~$. （АтоӨ்்кп，тє入д்тєऽ клтт．）

AӨHNA：Σ toupvápo 44
Tๆク．5229554－5225677 T．K． 10433 Computer hia O入Ouc， Information käúc，kal tou avakolvüvel otouc avaүvш̈otec， pinous Ths órl：
Amó inv in lavouapiov，$\rho a \varphi$ cia inc，orn हyкaӨiotatal ota vea 44 ．

пєрıооо்тєрєऽ пגпрочорієऽ

нicro-IUEEX

$\Sigma o \lambda \omega \mu$ טن் 16, 10682, AӨHNA, 7λ.: 3643496
yıа та проурад $\mu \mu а т а \dot{\text { б }}$ бац yıа:
SPECTRUM \square QL \square AMSTRAD \square
Eпஸ்vuц口:
Ovoua:
$\Delta ı$ úӨuvon:

FINMAN: H NEA ГENIA TOY EMПOPIKOY SOFTWARE

Tov $\Delta \boldsymbol{\eta \mu \eta \dot { \eta }} \boldsymbol{\rho} \boldsymbol{\eta} \mathbf{Z} \mathbf{Z} \boldsymbol{\beta}$ ßoì

 щ, COMPUDATA лои проофغ $\varepsilon є$ пє-

 окய்ల т $\mu \eta \mu \dot{\alpha} т \omega \nu$ тои пакغ்тоט, каı аітєра т $\omega \nu$ проүрациа่тшข параүүє-
$\lambda_{10} \lambda n \psi i a c$.

 пои то ка̇vouv va $\varepsilon \varepsilon \chi \omega \rho i \zeta \varepsilon ı . ~ А и т о ́ ~ п о и ~$

 о்тшц архıкท் عүката்бтаоп, отท்எıцо
 к.о.к. О λ о̀үoৎ عivaı òtı to management

FINMAN. 'Etaı ta apxeia opiそoutaı kaı
 атеріо́рıтто п $\lambda \dot{\eta} \theta$ ос єүүрафїv. Eпioņ о
 $\mu \alpha т а$ бє поаүиатіко் хро́vо (REAL-TIME)

То алот $\dot{\varepsilon}$ हбоиа, عivaı oı
 paı்иоvtaı autó $\mu a t a$ aro to FINMAN,
 "фибוкغ́¢" $\lambda \varepsilon ו т о \cup \rho Y i \varepsilon \varsigma . ~$

EYETHMA ПEへATתN

То поо́үрациа ачто́，тпрві тлѝрך каı

 $\mu \varepsilon ̇ v \varepsilon \varsigma \mu \varepsilon \pi \lambda \dot{\eta} \rho \eta$ avà $\lambda v o n$（OPEN ITEM）

 каı in бıápkeıa miotwons tou λ доүаріа－
 побо் тои хартоөп̆нои kaı tou ФKE
 Yıa к $\dot{\theta} \theta \varepsilon \pi \varepsilon \lambda \dot{\alpha} т \eta$ ．
 ипо̇خоппа проүра́циата тои пакغ̇тои，

 опоіа архіदяı va каӨıєрш்vetaı ota ооßара́ проүра́циата каı ßопӨá то

 $\pi \lambda$ профоріа ато́ то архвіо．

ミтіс ектипш்бяя，тои проүра́ниатос，

 ミиүкеитрштікй ката́ataon хартооп்иои MYФ，Katȧotaon anȯסoonc xaptoon்．

ноט－ФКЕ к λ п．

 （ бع побобто̀ каı апо்えито побо̀）yıa тоь

 натос．

ЕYЕTHMA АПООНКНЕ

То поо́үрациа аито́，паракодоиөві ато் 1 вшс 9 втаирієऽ，тои η каӨяцй

 ßода каı адфарі θ иптікойя характйрея， каı η घúpeon tou каं $\theta \varepsilon$ घiठouç aпоं то

 $\mu \mathrm{ta}$ ．

Etic סuvatótntec tou проүра́ $\mu \mu а т о \varsigma$,

тпта бıафоретוкой тро́тои апотіцпоп

 а६ia тоис，то ко்бтоц т $\omega v \pi \omega \lambda \eta \theta \dot{\varepsilon} v \tau \omega v$, тो

То поо்үрациа，тпрві ако̇ца бтатібт

 тп каı вібоис каı аuто́датои ипо λ оүıбио

 Пара் $\lambda \lambda \eta \lambda \alpha$ ，то поо́үрациа биүкратв

 фибוкท் апоүрафй апо日்̇кпс，катахш̈р
 каі єкти்пшon тшv סıaфорйv апоӨп்кпо H arotipnon $\tau \omega v$ סıaфорїv anoүpaфic

 уіvetaı autónata．
ミтіс єктипш்бяяс тои пооүрд́цдато

 тиододүіо．

EnINORH EG EYMOHRTIXO

SODTWART RHVITW

EYETHMA TENIKHE NOCIETIKHE

То поо́үрациа аито́，проофє́ряı סuva－

 орібधı ало் поштоßа் $\theta \mu$ ıоия $\mu \varepsilon \dot{\chi \rho ı ~ к а ı ~}$
 перьорıбио்．Н випиغ́р $\omega \sigma \eta$ т ωv ипо $\lambda о і п \omega \nu$

 μ عiou）．
 проүра́ $\mu \mu$ тос，епוт е்петаı η катахш்－ pクō кaı бu

 xய̈pnon kaı $\sigma u \mu \phi \omega v i \alpha ~ \varepsilon \gamma \gamma \rho a \phi \dot{\omega} v ~ т \rho ı \dot{\omega} v$ прйт $\omega v \mu \eta \nu \dot{\omega} \nu$ тou véou غ̇touc X X piç va

 vоцıкои் غ̇тоия $\eta 1$ Nǫцßpiou 1985 кaı oav ṫ̇̀оя $\eta 31$ Октшßpiou 1986.

 ६̇ंvo vó $\mu \iota \sigma \mu$ а $\mu \varepsilon$ перıүрафท் аитоú，η
 oŋऽ，η عúpeon خoүapıađuoú $\mu \varepsilon$ ßảon опоוабウ்лотє $\lambda \dot{\varepsilon} \xi \eta$ тПऽ перıүрафท்ऽ тои $\dot{\eta}$

 үıа па入аıоттер $\eta \mu \varepsilon \rho о \mu \eta v i a, ~ ү і \alpha ~ т \eta \nu$
 λ д́үı。

EYETHMA $\triangle I E Y \Theta Y N \Sigma I O Г P A \Phi O Y$

Ало́ $\dot{\varepsilon} v a$ пакв்то oav то FINMAN $\delta \varepsilon \theta \alpha$

 avто́，μ порои் $\mu \varepsilon$ ви்ко α каı үри்үора va

 архвіо пєлатш்

 віठоц тои вити̇лои пои θ а хрпбוцопопп－

 óvoua пг $\lambda \dot{\alpha} т \eta$ ．

EYETHMA ПAPAMETPSN

То бט்бтпиа парацвंтр ωv ，о́лшৎ каı то

 та ипо்дотпа проүра́ $\mu \mu$ та тои пакв்тои． Σ копо்с tous عivaı，va кшбıкопоюйン ठıд́форєя плпрофорієя үıа ако́н $\mu \varepsilon ү а$－

 проүрад $\mu \mu$ тос．

$\Delta \varepsilon \lambda$ тio параүуүєдiaç．

єпıкоиріко́ про́үра $\mu \mu$ а $\mu \varepsilon$ бто́хо тпи
 пои uпа́рхоиข бта проүра́ $\mu \mu$ ата пв $\lambda \alpha-$

 втغ́рои апоктойン घидиүıоіа каı прооар－
 алоө்்кŋऽ клл．

モYミTHMA £YNOHMATIK $\mathbf{\Omega N}$

 COMPUDATA，ठıamotíaauع ótו oו．

 поо́бßабпऽ отוৎ плпрофорієя тои пакв－ тои．Tпи проотабіа тои пакв่тои апо்

То пюо́үра $\mu \mu$ аито́，غ̇хєı баи бто́хо то

 $\mu \dot{\text { átwv tou пакغ́тои．То окетттко пои }}$ ако оиӨधітаı घivaı ótı ò λ а та проүра́ μ－
 $\theta \varepsilon \rho$ а апо் опоוоибŋ்пот ε ，$\dot{\varepsilon} \omega \varsigma$ о́тои «к $\lambda \varepsilon$－

 $\mu \varepsilon$ » μ торой $\mu \varepsilon$ va $\delta \dot{\omega} \sigma o u \mu \varepsilon ~ \mu \varepsilon ̇ \chi \rho ı ~ 3 ~$ ठıафоретіка் $\sigma \cup v Ө \eta \mu a t ı к \dot{\alpha}$ пои va avn்－

 Autó givaı $\delta u v a t o \dot{t} \varepsilon \rho о$ aró ò $\lambda \alpha \tau^{\prime}$ व̀ $\lambda \lambda \alpha$
 «ки́рıо оиขӨпиатıко்＂μ поряі：
 нолоוท்бвı опоוобท்потє про́үра $\mu \mu$ віvaı

 пооүрд́ $\mu \mu$ атос．
－ Na a $\lambda \lambda \dot{\alpha} \xi \varepsilon$ т то íठı to «кúpıo ouvӨпиатіко̇＂．

 проүра́ $\mu \mu а т а ~ т о и ~ п а к غ ் т о и ~ п \rho غ ் п є । ~ v a ~$
 «kט்pıou ouvӨnuatıкoú＂k $\lambda \varepsilon ı \delta \dot{\omega} v \varepsilon ı ~ \varepsilon ̇ v a . ~$ èva ta проүрд́ $\mu \mu$ ата ठivovtac то бuv－
 iठıо поо́үрациа поо́кєıтаı va хрпоио－
 каı ठєи்тєро $\dot{\eta}$ каı тріто бטvӨпиатıко．

EYETHMA ПАРАГГЕЛIONHЧIA乏／ TIMO＾OГHEHE

 тптєৎ оло்клпрои тои пакє่тои．Н параү－
 FINMAN，xápn oтпи поштолорıакท்

 xwpis va anaıtعitaı үvய்ön tou кшбıкой

 үivoutaı autónatoı $\dot{\varepsilon} \lambda \varepsilon \gamma$ үоו tnc ката入

 тп．乏тіс סиvато́тптеৎ тои проүра́ $\mu \mu$ атоя，
 үıа к $\dot{\theta} \theta \varepsilon$ параүүє $\lambda i \alpha$ каı үıа ка́ $\theta \varepsilon$ ү үраций

 биүкєкриц்и $л а \rho а ү ү \varepsilon \lambda i \alpha$.

 тוио入оүіov．H oӨóvn кáveı scrolling návw

 घбопоіПоп о́таи η そптой μ ки пооо́тпта
 апоӨウ்кп иாо்入оло．

 óvo䒑а архіไょı amó ПА

 параүүвліас，арүо்тєра．
Н тіцо入ӧүпоп μ ıя параүүع λ ias каı η

 epyaoies va yivouv óxı μ óvo yıa $\mu ı \alpha$ биүкєкрıцвंиך параүүعлia，$\alpha \lambda \lambda \dot{\alpha}$ каı оцабıка̇ үıа $\mu ı \alpha$ атоӨ்்кŋ．
О иполоүıбио́я хартобท் μ ои каı Ф．K．E．

 форетıкой хартобп்цои каı Ф．К．Е．үıа

 катабтрофท்я тои палıо́ тוцо入оүіои）．$\Sigma \varepsilon$

 пहлатїv каı апоӨ்்кпя，xшрія va anaı－ тои́vtaı про́бӨвто хвıрıбиоі апо் то хрท்oтท．

 ката́ віठос．

 ПAPAMETPOI $\Sigma Y \Sigma T H M A T O \Sigma$ TIMO． ＾OГHटH乏 kaı va èxouv סnuıoupүnӨsi oı

 pшцв́va kaı ta avtiotoıxa apxвia．Aфои́ yivouv autés ol epyaciec，μ торяi va архібєı η ठıабıкабіа вıбаүшүท்я параү． үع $\lambda_{ı} \omega \dot{\nu}$ ．

 $\triangle \Omega \Sigma E$ ПA \wedge I»，«EYXAPI $\Sigma T \Omega$ $\Sigma Y N E X I-$ $Z \Omega$ »，«ЕПI Σ TPЕФ Ω » к $\lambda \pi$ ．Аит $\dot{\alpha}$ про $\lambda \alpha-$ ßaivouv опоוaס́ض்потє $\lambda a \cup \theta a \sigma \mu \dot{\varepsilon} \cup \eta ~ \varepsilon v \varepsilon ́ \rho-~$ үعıа каı таutóxpova yevvoúv oto xpr்otn

 $\mu \varepsilon$ то поо்үра $\mu \boldsymbol{\Sigma}$ YNEXIटH ПАРАГ． ГЕЛIA乏．Като́пוv，ипоряi каvяic va
 АКҮP $\Omega \Sigma H$ ПАРАГГЕЛIA Σ үıa va $\delta \varepsilon ו$

Н тіцодӧүпоп тшט параүүعлıїи μ ло－ реі va үіveı $\mu \varepsilon$ ठи்о тро́лоия．О прйтоя， ачора́ тіцодо́үпоп оє ON LINE－REAL TIME ката́бтабך $\mu \varepsilon$ то поо́үра $\mu \mu \alpha$ ЕІІАГ $\Omega Г Н$ ПАРАГГЕЛIA $\dot{\eta} \mu \varepsilon$ то поо́үрациа Σ YNEXİН ПАРАГГЕЛIA乏

 МОЛОГНГН ПАРАГГЕЛI $\Omega \mathrm{N}$ каı ava－ фغретаı отпи перілтшоך поט غххєı $\delta \eta$－
 （batch），то опоіо віvaı $\dot{\eta} \delta \eta$ катахшр η－ $\mu \varepsilon$ йо отои ипо入оүוотท்．
Σ то́ т т̇خоৎ тпৎ $\eta \mu \dot{\varepsilon} \rho a \varsigma, \mu \pi о \rho о \dot{\mu} \mu \varepsilon$ va
 $\dot{\text { оे } \lambda \omega \nu ~ \tau \omega \nu ~ а л о Ө \eta к \dot{\omega} \nu ~} \mu \varepsilon$ то ипопоо́үра μ－ $\mu \alpha$ ЕКТҮП $\Omega \Sigma$ Н НМЕРО \wedge ОГIOY П Ω－ $\Lambda H \Sigma E \Omega N$ ．То поо́үра μ а वuто́，ठ εv віvaı

 $\varepsilon \beta \delta о \mu \dot{\delta} \delta a$ ．इтпи періптшоп аuтท்，цас

То ипопро́үра $\mu \boldsymbol{\alpha}$ ЛІАГРАФН НМЕ－ РО $Л О Г І О Ү ~ П \Omega \wedge Н \Sigma Е \Omega N, ~ \varepsilon к т \varepsilon \lambda \varepsilon і т व । ~$

 каı єктє入єi тn סıaүpaфウ் тou．
 парапа்vш avartúxӨŋкаv，то்бо аплі் घivaı то пакغ̇то otn Xprion tou． O_{1}
 тıкш் MENU ．Kaı yıa va $\theta u \mu \eta$ Өoú $\mu \varepsilon \lambda i$ yo тпи абфа் $\lambda \varepsilon ı \alpha$ тоט пооүра́ $\mu \mu$ тоя $\mu \varepsilon$ тп
 о́ті：апо் то MENU $\delta ı а \lambda \dot{\varepsilon} ү о \cup \mu \varepsilon ~ т о ~$

 va $\delta \dot{\omega} \sigma o \cup \mu \varepsilon$ то ката́ $\lambda \lambda \eta \lambda$ о оиvӨпиатıко்

 $\triangle \Omega \Sigma A T E \quad \wedge A \Theta O \Sigma$ ¿YNOHMATIKO»．

 єүүрац $\dot{\omega}$

 проїо̇vтоя

 ミTHMATO Σ ．H \triangle EITOYPГIA $\triangle I A K O$ ．

 єпı入оүй ЕПІइТРОФН μ порои́ $\mu \varepsilon$ то́тє va ६avaүupioouиع бтои ки̇рıо ката்入оүо．

DOCUMENTATION

 о்тו то DOCUMENTATION тои пакغ̇тои

 проүра́ $\mu \mu а т а$ ．Фибıка́，та еүхвıрібıа عivaı үра $\mu \mu \varepsilon ं v a ~ o t a ~ \varepsilon \lambda \lambda \eta v ı к \alpha ̇ ~ к а ı ~ к а Ө о-~$

 manual．

EПINOLOE－ エYMПEPAEMATA

 тous avөpürous tŋc COMPUDATA үıа in $\delta \eta \mu$ ıovpria tou FINMAN，غ́ठ $\omega \sigma a v$

 twv tou FINMAN，घ̇Xouv סuvatótпtȩ，

 та оиoтท̇uata tou FINMAN．H tñpnon

 рш்бعıя каı η ON LINE параүүع入ıо η－ чіа／тıио入о́үпоп ठıкаıо入оүои̇ข то үıаті то FINMAN μ лоряі va боүкрוӨві $\mu \varepsilon$ SOFT．
 філıко்тทта，η аофф் $\lambda \varepsilon ı а$ каı о парацвтрі－
 in סuvatótпта ε ппкоוvwvias тwи про－

 $\dot{\text { о́ }} \boldsymbol{\sigma} \omega \varsigma \dot{\alpha} \lambda \lambda \omega \sigma \tau \varepsilon \pi \rho о \alpha v a ф \dot{\varepsilon} \rho Ө \eta к \varepsilon$－$\beta$ рібк

 тои FINMAN парغ́xouv autn่ тп סuvaṫ тпта．
 ßáveı Пعла́тєऽ，Апо日ं́кп，Параүүعлı入пчіа，Тіро入ӧүпоп，Гعи．Лоүıотıк Парацє̇тоия avغ்pхетаı отıৎ 295.00

 kaveic va aүopáoधı μ óvo to $\sum \dot{\sigma} \sigma t \eta \mu$

 паквтт，$\mu л о \rho \varepsilon і ~ v a ~ \chi \rho \eta \sigma ı о п о ı \eta \theta \varepsilon і ~$

 DOS，CP／M，CCP／M oє ठıaтáદઘı

THN MHXANOГРАФHะH ェA乏．．．

 －ITreil M 24

н П．О．М
 пршंто каı MULTI USER！

＾．¿YГГPOY 69， 11745 A＠HNA，TH＾．： 9234016 ． 9217551
EMIIITEYOEITE THN EE MAE．

Фávnc Etả̈nc

－Yполоү10т́́¢：PHILIPS P2000 －Фفtoavtypaبıкá：3M
－Hдєктр．Грачоиnxavé¢：ADLER，BROTHER －Apıөиounxavés

IIAPADIAOYME THN IAIA MEPA： Avaגஸ́ouца үıa үpaчounxavés，COMPUTERS，甲отоаипүрачика́．

SERVICE Mnxavóv Гpaqeíwv inv íoia pépa．

Σ as $^{\text {vounáZoupı }}$
$\mu \varepsilon$ про́үрацциа LEASING Éva PHILIPS P2000 ń źva $\varphi \omega t$ tavtrүpaبıкó 3M．
 － 2111

No 45 otavi KEA

＠EMATA

O
 ENOE
 АЕITOYPГIKOY ェY 5 THMATO

Abstract

 $\pi \varepsilon \rho \iota \sigma \sigma o \dot{\tau} \varepsilon \rho \alpha \lambda \varepsilon \iota \tau о \cup \rho \gamma \iota \kappa \alpha \dot{\sigma} \sigma \sigma \tau \eta \dot{\eta} \mu \tau \alpha \alpha \alpha \iota \pi \varepsilon \rho \iota \gamma \rho \dot{\alpha} \psi \alpha \mu \varepsilon \tau \iota \varsigma \delta \iota \alpha \dot{\varphi} \varphi \rho \varepsilon \varsigma$ $\varepsilon v o ̌ \varsigma ~ \sigma \chi \varepsilon \delta \iota \alpha \sigma \tau \eta \dot{\eta} \pi 0 v \alpha v \alpha \lambda \alpha \mu \beta \dot{\alpha} v \varepsilon \iota ~ \tau o ̇ \sigma o ~ \tau \eta ~ \sigma \chi \varepsilon \delta i \alpha \sigma \eta$ ó $\sigma 0$ к $\alpha \iota ~ \tau \eta v$

TOY ГI Ω PГOY ПОА

 $\tau \alpha \pi \rho \dot{\omega} \tau \eta \varphi о \rho \dot{\alpha} . \Sigma v v \dot{\eta} \theta \omega \varsigma, \tau \alpha \alpha \pi о \tau \varepsilon \lambda \bar{\varepsilon}-$
 $\pi \varepsilon \xi \varepsilon \rho \gamma a \sigma i \alpha \varsigma ~ \mu \alpha \varsigma ~ \alpha v \alpha \gamma к \dot{\alpha} \zeta$ ouv va $\varepsilon \pi 1-$

 $\tau \alpha \varsigma ~ \tau ı \varsigma ~ \mu \varepsilon \tau \alpha \tau \rho о \pi \varepsilon ่ \varsigma ~ к \alpha ı ~ \tau ı \varsigma ~ \beta \varepsilon \lambda \tau \iota \dot{\sigma} \sigma ı \varsigma$ tou $\mu \alpha \varsigma$ vлаүорєن்ouv $\tau \alpha \sigma \cup \mu \pi \varepsilon \rho \dot{\alpha} \sigma \mu \alpha \tau \alpha$

$\pi \rho о \eta \gamma о ⿺ 辶 \mu \varepsilon v \varepsilon \varsigma \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i \varepsilon \varsigma$.
H $\sigma \chi \varepsilon \delta i a \sigma \eta$ हvóc $\Lambda . \Sigma$ ．，$\mu \pi о \rho \varepsilon i{ }^{2} \alpha$ $\pi \alpha \rho о \mu о н \alpha \tau \varepsilon i \quad \mu \varepsilon$ тך $\sigma \chi \varepsilon \delta i \alpha \sigma \eta$ हvŏs

 बias $\sigma \chi \delta \delta i a \sigma \eta s$ $\pi \rho ı v \quad \pi \rho о \chi \omega \rho \eta \dot{\sigma} \sigma \nu \mu \varepsilon$

1 KA＠OPILMOE YПHPE

 $\mu i \alpha \alpha v \alpha \lambda \nu \tau \iota \kappa \eta \dot{\delta} \delta ı \delta \iota \kappa \alpha \sigma i \alpha$ тои $\dot{\varepsilon} \chi \varepsilon \iota \quad \sigma \alpha \nu$ бколо் va $\varepsilon v \tau о \pi і \sigma \varepsilon ı:$
－$\tau \iota \varsigma \pi \rho о \delta \iota \alpha \gamma \rho \alpha \varphi \varepsilon$ кои к $\kappa \theta$ оріцоиv о் $\lambda \varepsilon \varsigma \tau \iota \zeta$ v $\pi \eta \rho \varepsilon \sigma i \varepsilon \varsigma \pi о \cup ~ \theta \alpha \pi \rho о \sigma \varphi \dot{\rho} \rho \varepsilon \iota$ то $\lambda \varepsilon ı \tau о \cup \rho \gamma \iota \kappa$ к̀ би்бтŋ $\mu \alpha$ ．

 $\tau \eta \sigma \eta \kappa \tau \lambda$ ．）．
 $\pi 0 v \alpha v \tau \alpha \lambda \lambda \dot{\alpha} \sigma \sigma о \nu \tau \alpha \iota ~ \sigma \alpha \nu \pi \lambda \eta \rho \circ \varphi о-$ $\rho i \varepsilon \varsigma \gamma 1 \alpha v \alpha \sigma \cup \mu \pi \lambda \eta \rho \omega \theta \varepsilon i \quad \eta \varepsilon \kappa \tau \dot{\varepsilon} \lambda \varepsilon \sigma \eta$ $\mu i \alpha \varsigma ~ \cup \pi \eta \rho \varepsilon \sigma i \alpha \varsigma$.

 $\alpha \pi o \dot{\varepsilon} v \alpha \alpha \rho \chi \varepsilon i o ~ \kappa \alpha \iota ~ \pi \dot{\omega} \varsigma \theta \alpha \delta \varepsilon \chi \tau$ той $\mu \varepsilon \tau \alpha$
 $\gamma \rho \alpha \mu \mu \dot{\alpha} \mu \alpha$ ；）．
То $\alpha \pi о \tau \dot{\varepsilon} \lambda \varepsilon \sigma \mu \alpha$ тŋऽ $\varepsilon \rho \gamma \alpha \sigma i \alpha \varsigma ~ \pi о \cup$
 кท் $\sigma \eta \mu \alpha \sigma i \alpha$ ү $\iota \alpha \tau i:$
 $\theta \alpha \alpha v \alpha \lambda \dot{\alpha} \beta$ оин ε ．
 $\theta \dot{\varepsilon} \lambda$ оu $\mu \varepsilon$ v $\alpha \kappa \alpha \tau \alpha \sigma \kappa \varepsilon \cup \alpha \dot{\alpha} \sigma о \cup \mu \varepsilon$.

 غ́pyou．
 $\varepsilon v o ́ \varsigma ~ к \tau \iota \rho i o v, ~ \varepsilon i v a ı ~ o t ~ \pi \rho о \delta ı \alpha \gamma \rho \alpha \varphi \dot{\varsigma}$ тทร $\lambda \varepsilon ⿺ \tau о \cup \rho \gamma เ \kappa o ̇ \tau \eta \tau \alpha \varsigma$ тov $\chi \dot{\omega} \rho \circ \cup, \delta \eta \lambda$ ．η $\alpha \pi \alpha \rho i \theta \mu \eta \sigma \eta \tau \omega \nu$ v $\pi \eta \rho \varepsilon \sigma t \dot{\omega} \nu \pi о \cup \theta \alpha \mu \alpha \varsigma$ $\pi \rho о \sigma \varphi \dot{\varepsilon} \rho \varepsilon$ то ктірıо（ $\pi \dot{\sigma} \sigma \alpha \pi \alpha \tau \dot{\omega} \mu \alpha \tau \alpha$ ，
 τ § $\kappa \lambda \pi$ ．）．Eivaı $\varphi \alpha v \varepsilon \rho o \dot{o}$ òt ot $\pi \rho о \delta \iota \alpha \gamma \rho \alpha \varphi \varepsilon \varsigma$

 $\chi \rho o ̇ v o \pi \alpha \rho \alpha \dot{\delta o \sigma \eta \zeta) ~ \tau o v ~ к \tau 兀 \rho i o v . ~}$

2 MONTEAO AEITOYPIIAE

To $\delta \varepsilon \dot{\tau} \tau \varepsilon \rho$ к $\alpha \iota ~ к \rho і \sigma \iota \mu о ~ \sigma \tau \dot{\alpha} \delta \iota \circ$ ，$\varepsilon i v \alpha \iota$ о

 $\alpha \pi \dot{\circ} \tau \alpha \alpha \pi \sigma \tau \varepsilon \lambda \dot{\varepsilon} \sigma \mu \alpha \tau \alpha \tau \eta \varsigma \pi \rho \dot{\tau} \tau \eta \varsigma \varphi \dot{\alpha} \sigma \eta \varsigma$.
 $\kappa \tau \iota \rho i o v, ~ \varepsilon i v a t ~ \tau \alpha ~ \alpha \rho \chi ı \kappa \dot{\alpha} \quad \sigma \chi \varepsilon \dot{\varepsilon} t \alpha$ हvós

 $\sigma \beta \alpha \sigma \eta$ $\sigma \varepsilon$ кoıvovis $\chi \dot{\omega} \rho \circ \cup \varsigma, \alpha \pi о \mu$ о̀v $\omega \sigma \eta$ $\tau \omega \nu \chi \dot{\omega} \rho \omega \nu \varepsilon \rho \gamma \alpha \sigma i \alpha \varsigma, \varphi \cup \sigma \iota \kappa o ́ s ~ \varphi \omega \tau \iota \sigma \mu \circ \dot{\varsigma}$ $\kappa \alpha \iota \varepsilon \xi \alpha \varepsilon \rho ı \sigma \mu o ̇ \zeta)$ ．
 $\kappa \alpha \iota$ о $\pi \alpha \rho \alpha \lambda \lambda \eta \lambda ı \sigma \mu$ ò $\sigma \tau$ о $\theta \dot{\varepsilon} \mu \alpha$ $\tau \eta$

 $\sigma \chi \varepsilon \delta \iota \alpha \sigma \tau \eta \dot{\tau} \tau \omega v \lambda \varepsilon \iota \tau о \cup \rho \nleftarrow \kappa \dot{\omega} v \sigma \cup \sigma \tau \eta \mu \dot{\alpha}-$ $\tau \omega \nu \tau \alpha \kappa \rho \iota \tau \eta \dot{\rho} \iota \alpha$ عival $\sigma \varepsilon \mu \varepsilon \gamma \dot{\alpha} \lambda \circ \beta \alpha \theta \mu \dot{o}$

－AПАOTHTA

 $\varepsilon \xi$ טппретєі тоиц бкотойц $\mu \alpha \varsigma$ ，то̇бо $\pi \iota \circ$
 $\sigma \eta \tau \omega v \lambda \alpha \theta \dot{\omega} v, \eta$ оuv $\eta \dot{\eta} \rho \eta \sigma \eta$ к $\alpha \iota \eta$ $\varepsilon \pi \dot{\varepsilon} \kappa \tau \alpha \sigma \dot{\eta} \tau 0 \cup$.

－OMOIOMOPФIA

To μ оvт $\dot{\varepsilon} \lambda, \pi \rho \varepsilon \dot{\varepsilon} \varepsilon \iota \quad v \alpha$ ठiveı $\tau \eta$

 $\mu \circ \cup \varsigma) \kappa \alpha \iota \kappa o t v \alpha \dot{\alpha} \nu \lambda \iota \alpha \dot{\alpha}(\delta$ о $\mu \dot{\varepsilon} \varsigma \delta \varepsilon \delta о \mu \dot{\varepsilon} v \omega v)$ ．
 $\tau \omega v \quad \alpha \lambda \gamma о \rho i \theta \mu \omega v \quad \pi \circ \nu \quad \theta \alpha \quad \pi \rho \dot{\varepsilon} \pi \varepsilon \iota \quad v \alpha$ $\pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \sigma \tau о ⿱ 亠 v, \quad \theta \alpha$ होахเбтотоเท่－ $\sigma 0 \cup \mu \varepsilon \tau i \varsigma \pi \iota \theta \alpha v \dot{\varepsilon} \varsigma \pi \eta \gamma \varepsilon \dot{\varsigma} \lambda \alpha \theta \dot{\omega} v \alpha \cup \xi \dot{\alpha}-$ vovta $\tau \eta$ б $\sigma v \varepsilon ̇ \pi \varepsilon$（reliability）тоט $\Lambda . \Sigma$ ． $\kappa \alpha \iota \theta \alpha \mu \varepsilon เ \dot{\omega} \sigma o \cup \mu \varepsilon$ то $\chi \rho \dot{v o} \pi \alpha \rho \alpha \dot{\delta} \delta \sigma \eta \zeta$ ．

3 MHXANIEMOI EESTEPIKHE AEITOYPIIAL

To $\tau \rho i \tau 0 ~ \sigma \tau \dot{\alpha} \delta \iota \circ$ чоט $\sigma \chi \varepsilon \delta \iota \alpha \sigma \mu \circ$ ט่，$\varepsilon i v \alpha \imath$
－opı $\sigma \mu$ ȯऽ $\tau \omega v \mu \eta \chi \alpha v เ \sigma \mu \dot{\omega} \nu \pi 0 v \quad \theta \alpha$
 $\mu \circ v \tau \dot{\varepsilon} \lambda o v . \mathrm{M} \varepsilon \tau \operatorname{\tau }$ ópo MHXANILMO $\pi \varepsilon \rho \imath \gamma \rho \dot{\alpha} \varphi о \cup \mu \varepsilon \dot{\varepsilon} v \alpha \nu$ а $\alpha \gamma \dot{\rho} \rho ı \theta \rho$ к $\alpha \imath ~ \tau \alpha$ $\delta \varepsilon \delta о \mu \varepsilon \dot{v} \alpha \pi$ лоט $\chi \rho \varepsilon เ \alpha \dot{\zeta} \zeta \frac{v \tau \alpha \iota}{\gamma \iota \alpha} \tau \eta \lambda \varepsilon เ \tau \circ \cup \rho-$

 tous．Ot $\alpha \pi \lambda$ oi $\mu \eta \chi \alpha v i \sigma \mu o i, \pi \varepsilon \rho t \varepsilon \dot{\varepsilon} \chi o u v$

 $\alpha \cup \tau о \dot{v o \mu o t, ~} \delta \eta \lambda$ ．пои хрŋоццотоเойv
 tous．
$\Sigma \alpha v \pi \alpha \rho \dot{\alpha} \delta \varepsilon \iota \gamma \mu \alpha \mu \eta \chi \alpha v i \sigma \mu \circ v \dot{ }, \pi \varepsilon \rho \iota \gamma \rho \dot{\alpha}-$ ตои $\mu \varepsilon$ тоv $\alpha \lambda \gamma \dot{\rho} \rho і \theta \mu$ о π оט $\varepsilon \lambda \dot{\varepsilon} \gamma \chi \varepsilon ı \alpha v \dot{\varepsilon} v \alpha$
 бטбквиท்ऽ：
α ．Eivaı η бטбкви $\dot{\eta} \delta \iota \alpha \theta \dot{\varepsilon} \sigma \iota \mu \eta$ ；
EAN NAI $\alpha .1 \Delta \dot{\omega} \sigma \varepsilon$ $\sigma \tau о \quad \pi \rho o \dot{\gamma} \rho \alpha \mu \mu \alpha$ ठ七каi $\omega \mu \alpha$ хрท்oŋs．
$\alpha .2 \Sigma \eta \mu \varepsilon i \omega \sigma \varepsilon$ òтı η бטбкєยท் $\delta \varepsilon v$ عivaı $\delta \iota \alpha \theta \dot{\varepsilon} \sigma \iota \mu \eta$ ．
а． $3 \mathrm{Et} \delta$ о π оi $\eta \sigma \varepsilon$ то $\pi \rho о \dot{\gamma} \rho \alpha \mu \mu \alpha$

EAN OXI $\alpha .4$ Av $\dot{\gamma} \kappa \alpha \sigma \varepsilon$ to $\pi \rho \dot{\gamma} \gamma \rho \alpha \mu \mu \alpha$ $v \alpha \sigma \tau \alpha \mu \alpha \tau \eta \dot{\sigma} \varepsilon \iota \quad \gamma \iota \alpha 5 \delta \varepsilon u-$ $\tau \varepsilon \rho \dot{\lambda} \lambda \varepsilon \pi \tau \alpha$ ．
$\alpha .5$ Eлıбт $о \varphi \dot{\eta} \sigma \tau о \beta \dot{\eta} \mu \alpha \alpha$ ．
 $\pi \alpha \rho \alpha \tau \eta \rho \eta \dot{\sigma} \varepsilon \iota \varsigma:$
 $\theta \dot{\varepsilon} \tau \varepsilon \iota ~ \tau \eta \nu$ ט̇ $\pi \alpha \rho \xi \eta \eta \mu i \alpha \varsigma \delta о \mu \eta ं \varsigma ~ \delta \varepsilon \delta o-$
 $v \alpha \mu \alpha \varsigma \delta \dot{\omega} \sigma \varepsilon 1 \pi \lambda \eta \rho \circ \varphi \rho \rho i \varepsilon \varsigma \gamma 1 \alpha \tau \eta v$ $\tau \omega \rho ı \nu \dot{\eta}$ кат $\alpha \sigma \tau \alpha \sigma \eta$ $\tau \eta \varsigma ~ \sigma ט \sigma \kappa \varepsilon \cup \eta ं \varsigma ~$ （ $\beta \dot{\eta} \mu \alpha \alpha 1$ ），єi $\tau \varepsilon \gamma 1 \alpha \tau \eta \nu \kappa \alpha \tau \alpha \gamma \rho \alpha \varphi \dot{\eta}$ $\mu i \alpha \varsigma \quad \alpha \lambda \lambda \alpha \gamma \dot{ŋ} \varsigma \quad \sigma \tau \eta \nu$ к $\alpha \tau \dot{\alpha} \sigma \tau \alpha \sigma \eta$ $\tau \eta \varsigma$ бטбкєטท்ऽ（ $\beta \dot{\eta} \mu \alpha \alpha .2$ ）．
－O $\mu \eta \chi \alpha v i \sigma \mu o \dot{\varsigma} \pi o v \pi \varepsilon \rho เ \gamma \rho \alpha \dot{\alpha} \alpha \mu \varepsilon$ ， عivaı $\Sigma \mathrm{YN@ETO} \mathrm{\Sigma}, \gamma ı \alpha i$ o $\alpha \lambda \gamma \dot{\rho} \rho ı \theta-$
 बтov $\dot{\alpha} \lambda \lambda$ ous $\mu \eta \chi \alpha v i \sigma \mu \circ$ ©́s：
 $\pi \rho о \gamma \rho \alpha \mu \mu \dot{\alpha} \tau \omega \nu(\beta \dot{\eta} \mu \alpha \alpha$ ．3）
－To $\mu \eta \chi \alpha v i \sigma \mu$ ò $\pi \rho о \sigma \omega \rho i v \eta \dot{\zeta} \delta t \alpha-$
 $\gamma \rho \dot{\alpha} \mu \mu \alpha \tau \circ \varsigma(\beta \eta \dot{\mu} \mu \alpha$ ．4）
 $\mu \eta \chi \alpha v ı \sigma \mu \dot{\omega} v$ हvo̊s $\Lambda . \Sigma$ ．，हival $\pi \alpha \rho o \dot{\mu} \mu \circ っ \varsigma$

 $\lambda \nu o ̇ \mu \varepsilon v \alpha$ ктірıа．Паратŋрой $\mu \varepsilon$ ，о̀ $\tau \iota ~ \tau \alpha$ $\kappa \tau i \rho ı \alpha$ $\alpha \cup \tau \dot{\alpha}$ عival $\mu i \alpha$ oủv $\theta \varepsilon \sigma \eta$ $\alpha \pi \dot{o}$

 $\mu \varepsilon \rho \iota к \varepsilon ̇ \varsigma ~ \tau \cup \pi о \pi о เ \eta \mu \varepsilon ் v \varepsilon \varsigma ~ \mu о \rho \varphi \dot{\varepsilon} \varsigma ~ \mu \varepsilon \tau \alpha \lambda \lambda t-$

 $\kappa о \mu \mu \dot{\tau} \tau \alpha \alpha \gamma \omega \gamma \dot{\omega} \nu \quad \kappa \tau \lambda$ ．М $\boldsymbol{\kappa} \pi \alpha \rho \dot{\mu} \mu$ оьо тро́ло，то $\Lambda . \Sigma$ ．$\alpha \pi о \tau \varepsilon \lambda \varepsilon i \tau \alpha \iota ~ \alpha \pi о \dot{o}$ ойv $\theta \varepsilon-$

vтаı $\alpha \pi$ ó $\dot{\alpha} \lambda \lambda$ ous $\alpha \pi \lambda$ oü $\sigma \tau \varepsilon \rho \circ \cup \varsigma ~ \mu \eta \chi \alpha v-$

4 АЕІОЛОГНГН YАIKOY

To т $\varepsilon \tau \alpha \rho \tau о$ $\sigma \tau \dot{\alpha} \delta ı$ то $\sigma \chi \varepsilon \delta t \alpha \sigma \mu 0 і$, $\pi \varepsilon \rho เ \lambda \alpha \mu \beta \dot{\alpha} v \varepsilon \iota \quad \tau \eta \nu \alpha \nu \tau \iota \mu \varepsilon \tau \dot{\omega} \pi \iota \sigma \eta \quad \tau \omega$
 $\tau \eta \varsigma ~ \alpha \rho \chi \iota \tau \varepsilon \kappa \tau о v เ \kappa \eta j_{\varsigma}^{\kappa \alpha \iota} \tau \omega v \varepsilon \nu \tau \circ \lambda \dot{\omega} v \tau 0$ $\mathrm{H} / \mathrm{Y} \kappa \alpha \theta \dot{\omega} \varsigma ~ \kappa \alpha \iota ~ \tau \omega \nu \quad \theta \varepsilon \mu \dot{\alpha} \tau \omega \nu \quad \pi 0$ $\pi \rho о к и ̇ \pi \tau o u v ~ \alpha \pi \dot{o}$ $\tau \eta ~ \sigma u ̈ v \delta \varepsilon \sigma \eta ~ \tau \omega v ~ \sigma ७-$

 เ δ เȯ $\tau \tau \varepsilon \varsigma$ тои H / Y ，кıv $\kappa \alpha \dot{\alpha} \nu \cup \mu \varepsilon \mu i \alpha \alpha \pi о \tau \cup \chi \eta \mu \dot{\varepsilon} v \eta$ к $\alpha \tau \alpha \sigma \kappa \varepsilon \cup \dot{\eta}$.
 $\varepsilon \kappa \tau \varepsilon v \varepsilon \dot{\varepsilon} \sigma \tau \varepsilon \rho \alpha$ $\sigma \varepsilon \quad \dot{\alpha} \lambda \lambda \alpha \dot{\alpha} \rho \theta \rho \alpha$ ．E $\delta \dot{\omega} \theta_{0}$ $\kappa \alpha \dot{v o v \mu \varepsilon} \tau \imath \varsigma \varepsilon \xi \dot{\eta} \varsigma \pi \alpha \rho \alpha \tau \eta \rho \eta \dot{\sigma} \varepsilon \iota \varsigma:$
－ $\mathrm{H} \varepsilon \kappa \mu \varepsilon \tau \dot{\alpha} \lambda \lambda \varepsilon v \sigma \eta \tau \tau \nu$ סuva$\tau о \tau \eta \dot{\tau} \tau \nu$ tov H / Y ot $\boldsymbol{\sim}$
 то $\mu \dot{\varepsilon} \gamma \varepsilon \theta$ os $\tau \omega v \pi \rho \circ \gamma \rho \alpha \mu \mu \alpha \dot{\alpha} \tau \omega v$ кal
 $\mathrm{H} / \mathrm{Y} \alpha \pi \dot{\circ} \tau \alpha \pi \rho \circ \gamma \rho \dot{\alpha} \mu \mu \alpha \tau \alpha$ тоט $\Lambda . \Sigma$ ．
－ $\mathrm{H} \varphi о \rho \eta \tau o ̇ \tau \eta \tau \alpha$ тои $\Lambda . \Sigma$ ．，$\delta \eta \lambda$ ．то π о̇оо $\varepsilon \dot{\kappa о} \lambda \alpha \mu \pi о \rho о \cup \dot{\mu} \mu \quad v \alpha \mu \varepsilon \tau \alpha \varphi \dot{\varphi} \rho \circ \cup \mu \varepsilon$ то $i \delta t o ~ \Lambda . \Sigma$ ．$\alpha \pi o \dot{\varepsilon} \dot{\varepsilon} v \alpha$ H／Y $\sigma \varepsilon$ ह̇va $\dot{\alpha} \lambda \lambda 0, \varepsilon \xi \alpha \rho \tau \dot{\alpha} \tau \alpha \iota \kappa \alpha \iota \alpha \pi \dot{\tau} \tau о \nu \tau \rho \dot{\pi} \pi о \mu \varepsilon$

 $\eta \mu \varepsilon \tau \alpha \varphi \circ \rho \dot{\alpha} \tau \circ \cup \Lambda . \Sigma, \sigma \varepsilon \dot{\varepsilon} v \alpha \dot{\alpha} \lambda \lambda o H / \gamma$ $\mu \pi о \rho \varepsilon i \operatorname{va}$ عivaı $\tau о \cup \lambda \dot{\alpha} \chi \iota \sigma \tau \circ v \pi \rho \circ \beta \lambda \pi$－ $\mu \alpha \tau \iota \kappa \eta ் ~ \alpha v$ ó $\chi \iota ~ \alpha \delta \dot{v} v a \tau \eta$ ．

5 KANONILMOI E天

To $\pi \dot{\varepsilon} \mu \pi \tau \circ \quad \sigma \tau \dot{\alpha} \delta \iota o$ रov $\sigma \chi \varepsilon \delta t \alpha \sigma \mu 0 i$, $\pi \varepsilon \rho \iota \lambda \alpha \mu \beta \dot{\alpha} v \varepsilon \iota \mu \iota \alpha \sigma \varepsilon \iota \rho \dot{\alpha} \alpha \pi \dot{\circ}$ $\theta \dot{\varepsilon} \mu \alpha \tau \alpha \pi$ $\alpha \varphi о \rho о \dot{v} \nu \tau \eta \nu \psi \eta \varphi \iota \alpha \kappa \eta \dot{\mu} \mu \rho \varphi \dot{\eta} \tau \omega \nu \pi \rho \rho$－ $\gamma \rho \alpha \mu \mu \dot{\alpha} \tau \omega \nu$ каı $\tau 0 \nu \tau \rho \dot{\pi} \pi 0$ оט்v $\delta \varepsilon \sigma \pi ;$ （linkage）$\mu \varepsilon \tau \alpha \xi \dot{v} \tau \omega \nu \pi \rho \circ \gamma \rho \alpha \mu \mu \dot{\alpha} \tau \omega v . H$ $\pi \rho \dot{\omega} \tau \eta \pi \rho о \sigma \pi \dot{\alpha} \theta \varepsilon \varepsilon \alpha$ $\pi \alpha \rho$ оиđiaons avtoi

 тou hardware．$\Sigma \tau$ то $\theta \dot{\varepsilon} \mu \alpha$ avtó $\theta \alpha$ үטрioon－ $\mu \varepsilon, \mu \varepsilon \pi \circ \lambda \lambda \dot{\varepsilon} \varsigma \lambda \varepsilon \pi \tau о \mu \dot{\varepsilon} \rho \varepsilon เ \varepsilon \varsigma, \sigma \varepsilon \dot{\varepsilon} v \alpha \alpha \pi \dot{\text { oto }}$ $\varepsilon \pi \dot{\sigma} \mu \varepsilon v \alpha \dot{\alpha} \rho \theta \rho \alpha$ ．
 $\gamma \rho \alpha \mu \mu \alpha \mu \pi о \rho \varepsilon i \quad v \alpha \pi \dot{\alpha} \rho \varepsilon \iota \mu \dot{\varepsilon} \chi \rho \iota ~ \kappa \alpha \iota \tau \rho \varepsilon \xi$
 （MOPФH KEIMENOY），દivaı $\alpha \cup \tau \eta \dot{\eta} \pi$ $\pi \rho о к \dot{\pi \tau \tau \varepsilon \iota ~} \alpha \pi$ о́ тך $\delta \eta \mu$ เои $\rho \gamma i \alpha$ тоט кє $\mu \dot{\varepsilon}$ ． vov tov $\pi \rho \circ \gamma \rho \dot{\alpha} \mu \mu \alpha \tau \circ \varsigma \mu \varepsilon \tau \eta \chi \rho \eta \dot{\sigma} \eta$ हvं́； $\pi \rho \circ \gamma \rho \dot{\alpha} \mu \mu \alpha \tau \circ \varsigma-\sigma u v \tau \dot{\alpha} \kappa \tau \eta$（editor）．H $\mu о \rho \varphi \dot{\eta} \alpha \cup \tau \eta \dot{\eta}, \chi \rho \eta \sigma \iota \mu \circ \pi о \iota \varepsilon i \tau \alpha \iota \sigma \alpha \nu$ вібо $\delta о \varsigma \gamma / \alpha$ тоטऽ $\mu \varepsilon \tau \alpha \varphi \rho \alpha \sigma \tau \varepsilon \dot{\kappa} \pi \rho \circ \gamma \rho \alpha \mu \mu \dot{\tau} \tau \omega$ （compilers－interpreters－assemblers）．

To $\alpha \pi о \tau \varepsilon \lambda \varepsilon \varepsilon \sigma \mu \alpha$ $\tau \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i \alpha \varsigma ~ \tau \omega ा$ $\pi \varepsilon \rho ı \sigma \sigma o ̇ \tau \varepsilon \rho \omega \nu \quad \mu \varepsilon \tau \alpha \varphi \rho \alpha \sigma \tau \omega ் \nu$ ，عivaı $\pi \alpha \rho \alpha \gamma \omega \gamma \dot{\eta} \mu i \alpha \varsigma \dot{\alpha} \lambda \lambda \eta \varsigma \mu \circ \rho \varphi \dot{\zeta} \varsigma \pi \alpha \rho \dot{\alpha} \sigma \tau \sigma$.
$\sigma \eta \zeta$ тоט $\pi \rho \circ \gamma \rho \dot{\alpha} \mu \mu \alpha \tau \circ$（МОРФН Σ XETI－
 $\mu \circ \rho \varphi \eta$ ，то $\pi \rho о ் \gamma \rho \alpha \mu \mu \alpha$ віvat غ̇точ μ о $v \alpha$ $\varepsilon v \omega \theta \varepsilon i \quad \mu \varepsilon \quad \dot{\alpha} \lambda \lambda \alpha \quad \pi \rho \circ \gamma \rho \dot{\mu} \mu \mu \alpha \tau \alpha \quad \gamma \mathrm{~L} \alpha \quad$ α $\alpha \pi о \tau \varepsilon \lambda \dot{\varepsilon} \sigma \varepsilon ⿺ \mu i \alpha \mu \varepsilon \gamma \alpha \lambda \dot{\tau} \tau \varepsilon \rho \eta$ ovtȯтŋ $\tau \alpha$ （module）．H $\mu \circ \rho \varphi \dot{\eta} \sigma \chi \varepsilon \tau \iota \kappa \eta ் \varsigma ~ \tau о \pi о \theta \dot{\varepsilon} \tau \eta-$
 $\lambda \varepsilon ı \tau о \cup \rho \gamma i \alpha \varsigma ~ \pi о \cup ~ \varepsilon \pi \iota \beta \dot{\alpha} \lambda \lambda \varepsilon \iota$ то $\Lambda . \Sigma$ ．$\sigma \tau \alpha$
 то $\mu \eta \chi \alpha v$ เб μ ó $\mu \varepsilon$ тоv олоіо $\dot{\varepsilon} v \alpha$ $\pi \rho$ о́ $\gamma \rho \alpha$－

Т $\dot{\varepsilon} \lambda о \varsigma, ~ \dot{\varepsilon} \chi о \nu \mu \varepsilon \tau \eta \vee \tau \rho i \tau \eta \mu о \rho \varphi \dot{\eta}$（MOP－ ФH EKTEAELHइ）$\mu \varepsilon \tau \eta \nu$ олоi α то $\pi \rho о \dot{\gamma} \rho \alpha \mu \alpha \mu \mu \pi \rho \varepsilon i \quad v \alpha$ $\varphi о \rho \tau \omega \theta \varepsilon i \quad \sigma \tau \eta$ $\mu \nu \eta \dot{\mu} \eta$ ．Н $\pi \alpha \rho \alpha \gamma \omega \gamma \dot{\eta} \alpha \cup \tau \eta \dot{\varsigma} \tau \eta \varsigma \mu \circ \rho \varphi \dot{\eta} \varsigma$
 $\rho \circ \rho \tau \omega \tau \eta \dot{\varsigma}$（loader）$\dot{\eta} \pi \iota o \sigma \omega \sigma \tau \dot{\alpha} \sigma \nu v \tau \dot{\alpha}-$ «гทऽ $\sigma \cup v \delta \dot{\varepsilon} \sigma \varepsilon \omega \nu$（linkage editor）．
О тро́лоऽ $\pi \alpha \rho \dot{\alpha} \sigma \tau \alpha \sigma \eta \varsigma \tau \omega v \varepsilon \nu \tau \circ \lambda \dot{\omega} \nu \tau \circ \cup$ $\mathrm{H} / \mathrm{Y} \sigma \tau \eta \mu \mathrm{\rho} \varphi \varphi \dot{\eta} \varepsilon \kappa \tau \varepsilon \dot{\lambda} \varepsilon \sigma \eta \varsigma, \varepsilon \pi \eta \rho \varepsilon \dot{\alpha} \zeta \varepsilon \tau \alpha \iota$

 к α Oopi弓ovtaı ot δ ıยuӨüvoॄı̧（address inding）$\tau \omega v \theta \dot{\varepsilon} \sigma \varepsilon \omega \nu \mu \nu \eta \dot{\mu})_{\varsigma} \pi \circ \cup \chi \rho \eta \sigma t-$
 ر $\dot{\mu} \mu \mu \alpha \tau о \varsigma$.

B．O KA＠OPILMO YПHPE II

H $\cup \pi \eta \rho \varepsilon \sigma i \alpha \pi о \cup \pi \rho \varepsilon ̇ \pi \varepsilon \iota ~ v \alpha \pi \rho о \sigma \varphi \varepsilon \dot{\rho} \varepsilon \iota$
 ivaı $\eta \pi \rho \circ \sigma \varphi \rho \rho \dot{\alpha}$ عvós $\pi \varepsilon \rho \iota \beta \dot{\alpha} \lambda \lambda 0 v \tau \circ \varsigma$ tou $\varepsilon \pi \iota \tau \rho \varepsilon ̇ \pi \varepsilon \iota ~ \sigma \tau о ~ \chi \rho \eta j \sigma \tau \eta ~ к \alpha \iota ~ \sigma \tau \alpha$ tроүрд́ $\mu \mu \alpha \tau \alpha$ тоט $\chi \rho \eta \dot{\sigma \tau \eta: ~}$
－$v \alpha \kappa \alpha \theta$ opioouv $\sigma \tau \circ \nu \mathrm{H} / \mathrm{Y} \tau \eta \nu \varepsilon \kappa \tau \varepsilon \dot{\varepsilon} \lambda \varepsilon$－ б η кд́лоtov $\dot{\varepsilon} \rho \gamma о$ ．
$v \alpha \varepsilon \lambda \dot{\varepsilon} \gamma \xi$ оuv $\tau \eta v \pi о \rho \varepsilon i \alpha \dot{\eta} \kappa \alpha \iota \tau \alpha$ $\alpha \pi \sigma \tau \varepsilon \lambda \dot{\varepsilon} \sigma \mu \alpha \tau \alpha$ चПऽ $\varepsilon \kappa \tau \dot{\varepsilon} \lambda \varepsilon \sigma \eta \zeta$ тоט غ́ ρ you．
$M \alpha \varsigma \varepsilon v \delta \iota \alpha \varphi \dot{\varepsilon} \rho \varepsilon \iota \pi \rho \dot{\omega} \tau \alpha v \alpha \kappa \alpha \theta$ o $\rho i \sigma o \cup \mu \varepsilon$ што́ то $\pi \varepsilon \rho \iota \beta \dot{\alpha} \lambda \lambda$ оै к $\alpha \iota$ то้ $\tau \rho \dot{\pi о} \mu \varepsilon$ то้ лоio $\gamma i v \varepsilon \tau \alpha \iota ~ \alpha v \tau \iota \lambda \eta \pi \tau o ́ \alpha \pi o \dot{~ \tau o ~} \chi \rho \eta \dot{\sigma \tau \eta}$ $\alpha \iota \tau \alpha \pi \rho о \gamma \rho \dot{\alpha} \mu \mu \alpha \tau \dot{\alpha} \tau о$ ．То $\dot{\varepsilon} \rho \gamma \circ$ лоט $\kappa \tau \varepsilon \lambda \varepsilon i \quad$ о H / Y ，к $\alpha \theta$ орі弓 $\varepsilon \tau \alpha \iota ~ \alpha \pi \dot{~} \tau \iota \zeta$
 $\alpha, \dot{\eta} \kappa \dot{\alpha} \pi \omega \varsigma$ ठเа甲орєтьк $\dot{\alpha}, \tau$ то $\pi \rho \dot{\partial} \gamma \rho \alpha \mu \mu \alpha$ ivaı غ̇vac $\pi \rho \circ \kappa \alpha \theta$ opı $\sigma \mu \varepsilon \dot{v} 0 \varsigma \varsigma ~ \sigma u v \delta v \alpha \sigma \mu o ́ \varsigma ~$
 KPIB $\Omega \Sigma \tau i \quad \pi \rho \dot{\varepsilon} \pi \varepsilon \iota$ v α к $\dot{v} \varepsilon \iota$ о $\mathrm{H} / \mathrm{Y} \gamma \iota \alpha$

 I／Y $\tau \alpha \cup \tau o ̇ \chi \rho o v \alpha$（concurrent execution） $\varepsilon \tau \alpha \pi \rho о \gamma \rho \alpha \dot{\mu} \mu \alpha \tau \alpha$ тоט $\chi \rho \dot{\eta} \sigma \tau \eta$ ．
H $\varepsilon \kappa \tau \dot{\varepsilon} \lambda \varepsilon \sigma \eta \tau \omega \nu \pi \rho \circ \gamma \rho \alpha \mu \mu \dot{\alpha} \tau \omega \nu \tau$ ．.,$\delta \eta \mu$ iov $\gamma \gamma \varepsilon i \mu i \alpha \alpha i \sigma \theta \eta \sigma \eta \tau \eta \varsigma \pi \alpha \rho o v-$ $i \alpha \varsigma ~ \tau o u ~ \pi o u ~ \gamma i v \varepsilon \tau \alpha \iota ~ \alpha v \tau i \lambda \eta \pi \tau \eta \dot{\eta} \alpha \pi o ̉$ ठu̇o

 ．. ．סivouv $\mu i \alpha \alpha v \theta \rho \omega \pi$ о́ $о \rho \varphi \eta$ о́ $\eta \eta$ бтоv I／Y．E $\tau \sigma \iota, \sigma \chi \eta \mu \alpha \tau i \zeta о \cup \mu \varepsilon \tau \eta v \varepsilon v \tau \cup ̇ \pi \omega \sigma \eta$

$\pi \lambda \eta \kappa \tau \rho \circ \lambda о \gamma \circ \dot{\mu} \mu \varepsilon, \dot{\eta}$ о̀ $\tau \iota \mathrm{H} / \mathrm{Y} \pi \alpha \mathrm{i} \rho \vee \varepsilon \iota$ $\tau \eta v \pi \rho \omega \tau \circ \beta \frac{\cup \lambda i \alpha}{} v \alpha \mu \alpha \varsigma \varepsilon เ \delta о \pi о เ \eta ๋ \sigma \varepsilon \iota \gamma 1 \alpha$
 $\pi \rho о \gamma \rho \dot{\alpha} \mu \mu \alpha \tau о \varsigma$ ，то $\Lambda . \Sigma . \pi \alpha i \rho v \varepsilon \iota ~ \tau \eta \mu \circ \rho \varphi \eta \dot{\eta}$ кд́лоt $\omega v \mu \eta \chi \alpha v เ \sigma \mu \dot{\omega} v$ v $\pi \circ \sigma \tau \eta \dot{\rho} \xi \eta \varsigma$（ $\pi \alpha-$
 $\alpha \pi$ о́ то $\pi \rho$ о́ $\gamma \rho \alpha \mu \mu \alpha$ ．

B． 1 ГHMEIO EПAФHะ ME TO XPHETH（USER INTERFACE）

Ot $\pi \rho о \delta \iota \alpha \gamma \rho \alpha \varphi \varepsilon$ кои к $\alpha \theta$ оріцоиv то
 $\varepsilon \pi \iota \kappa o t v \omega v i \alpha \mu \varepsilon$ то $\chi \rho \eta \dot{\sigma \tau \eta, ~ \alpha v \dot{\kappa} \kappa о \nu v ~ \sigma \varepsilon}$ $\dot{\varepsilon} v \alpha \sigma \tau \rho \dot{\omega} \mu \alpha \quad \varepsilon \varphi \alpha \rho \mu \circ \gamma \dot{\omega} \nu \quad \pi о \cup \quad \delta \varepsilon \nu \quad$ عivaı $\alpha \pi \dot{\lambda} \lambda \nu \tau \alpha$ $\sigma \cup v \delta \varepsilon \delta \varepsilon \mu \varepsilon \dot{\varepsilon} v o \quad \mu \varepsilon$ то $\Lambda . \Sigma . \Theta \alpha$ $\varepsilon \xi \eta \gamma \dot{\eta} \sigma o u \mu \varepsilon \quad \alpha \cup \tau \dot{\eta} \tau \eta \nu$ í $\sigma \omega \varsigma ~ \pi \alpha \rho \dot{\alpha} \xi \varepsilon v \eta$ $\pi \rho \dot{\tau} \tau \alpha \sigma \eta, \xi \varepsilon \kappa เ v \dot{\omega} v \tau \alpha \varsigma \alpha \pi \dot{\tau} \tau \eta v \pi \varepsilon \rho เ \gamma \rho \alpha \varphi \eta \dot{\eta}$
 $\tau \eta \nu$ ט
H oӨóvך tou $\chi \rho \eta \dot{\eta} \sigma \tau \eta, \varepsilon \lambda \dot{\varepsilon} \gamma \chi \varepsilon \tau \alpha \iota \alpha \pi \dot{\circ}$ $\dot{\varepsilon} v \alpha \pi \rho \dot{\gamma} \gamma \rho \alpha \mu \mu \alpha$ тои $\Lambda . \Sigma$ ．М ε то $\pi \rho \dot{\gamma} \gamma \rho \alpha \mu-$ $\mu \alpha \alpha \cup \tau \dot{o}$（command language interpreter $\dot{\eta}$ CLI）$\mu \pi о \rho о и ̆ \mu \varepsilon \vee \alpha$ $\varepsilon \rho \mu \eta v \varepsilon \dot{\sigma} \sigma о \cup \mu \varepsilon \pi \rho о к \alpha-$
 $\pi \lambda \eta \kappa \tau \rho о \lambda \dot{o} \gamma \iota 0, \alpha \pi \dot{\circ}$ «лоvtiкı» $\dot{\eta} \alpha \pi \dot{o}$
 $\tau \eta v \varepsilon \kappa \tau \dot{\varepsilon} \lambda \varepsilon \sigma \eta \dot{\varepsilon} \rho \gamma \circ v$ ．To $\pi \rho \dot{\gamma} \gamma \rho \alpha \mu \mu \alpha$ CLI，

 $\tau \eta \nu \pi \alpha \rho \circ \chi \dot{\eta} \tau \omega \nu \sigma \cup \gamma \kappa \varepsilon \kappa \rho \iota \mu \dot{\varepsilon} v \omega \nu$ v $\tau \eta \rho \varepsilon-$

To $\Lambda . \Sigma$ ．，$\delta \varepsilon \sigma \mu \varepsilon \dot{\varepsilon} \varepsilon ı \mu$ о̀vo то $\rho \varepsilon \pi \varepsilon \rho \tau$ о́ $\rho ⿺$

 $\mu \pi о \rho \varepsilon i \quad v \alpha \mu \varepsilon \tau \alpha \varphi \rho \dot{\alpha} \zeta \varepsilon \tau \alpha \iota \quad \sigma \varepsilon \mu i \alpha$ $\sigma \varepsilon \iota \rho \dot{\alpha}$

 $\alpha \pi$ ó to $\chi \rho \eta \dot{\sigma} \eta \eta$ ．H EYKOAIA XPHटHट $\kappa \alpha \iota \eta$ ДIAФANEIA тоט $\Lambda . \Sigma$ ．，к α Өорі弓о－ $v \tau \alpha \iota \sigma \varepsilon \mu \varepsilon \gamma \dot{\alpha} \lambda \circ \beta \alpha \theta \mu \dot{\alpha} \alpha \pi \dot{\text { o }} \tau \eta \lambda \varepsilon \iota \tau \circ \cup \rho \gamma i \alpha$ тоט $\pi \rho о \gamma \rho \alpha \dot{\alpha} \mu \alpha \tau \circ$ С CLI．

B． 2 ГНMEIO EПAФHГ ME ТА ПРОГРАММАТА （PROGRAM INTERFACE）

Ot $\pi \rho \circ \delta \iota \alpha \gamma \rho \alpha \dot{\varepsilon} \varsigma$ тои к $\alpha \theta$ oрiکouv то $\pi \varepsilon \rho \iota \beta \dot{\alpha} \lambda \lambda \frac{}{}$ ，$\mu \dot{\varepsilon} \sigma \alpha$ ото олоіо $\gamma i v \varepsilon \tau \alpha \iota ~ \eta$ $\varepsilon \pi เ \kappa о เ v \omega v i \alpha \mu \varepsilon \tau \alpha \xi \dot{v} \quad \pi \rho о \gamma \rho \alpha \mu \mu \dot{\alpha} \tau \omega v \kappa \alpha \iota$

 бєvápıo $\sigma \alpha \nu$ кı $\alpha \cup \tau o ̇ ~ \pi о \cup ~ \pi \varepsilon \rho เ \gamma \rho \alpha \dot{~} \varphi о \cup \mu \varepsilon$ $\pi \alpha \rho \alpha \kappa \dot{\alpha} \tau \omega:$

 $\sigma \varepsilon \iota$ то ко $\mu \mu \dot{\alpha} \tau \iota$ тоט $\Lambda . \Sigma$ ．π ои $\theta \alpha$ हivaı
 vт $\quad \rho \varepsilon \sigma$ iac．
 $\mu \pi о \rho \varepsilon i$ va $\dot{\varepsilon} \chi \varepsilon \iota \pi \rho o \dot{\sigma} \beta \alpha \sigma \eta \sigma \varepsilon \delta \varepsilon \delta о \mu \varepsilon$－
$v \alpha \pi$ ои Sivovtaı $\alpha \pi \dot{\delta}$ тo $\pi \rho \dot{\gamma} \gamma \rho \alpha \mu \mu \alpha$
 $\rho \omega \sigma \eta \tau \eta \varsigma \pi \varepsilon \rho \iota \gamma \rho \alpha \varphi \eta \eta^{\circ} \tau \eta \varsigma \cup \pi \eta \rho \varepsilon \sigma i \alpha \varsigma$.
－K $\dot{\pi} \circ เ \alpha \sigma \tau \imath \gamma \mu \eta \dot{\mu} \mu \tau \dot{\alpha} \tau \eta \delta เ \varepsilon \kappa \pi \varepsilon \rho \alpha i \omega$－

 $\dot{\omega} \sigma \tau \varepsilon$ то $\pi \rho \dot{\gamma} \gamma \rho \alpha \mu \mu \alpha$ v $\sigma v v \varepsilon \chi i \sigma \varepsilon \iota \tau \eta \nu$ $\varepsilon \kappa \tau \varepsilon ̇ \lambda \varepsilon \sigma \dot{\eta} \tau \circ \cup$.
－To $\Lambda . \Sigma$ ．$\dot{\varepsilon} \chi \varepsilon i ~ \tau \eta v$ v $\pi о \chi \rho \dot{\varepsilon} \omega \sigma \eta v \alpha$
 $\pi о t \omega ் v \tau \alpha \varsigma \delta \varepsilon \delta о \mu \varepsilon ̇ v \alpha) \sigma \chi \varepsilon \tau เ \kappa \dot{\alpha} \mu \varepsilon$ ò $\lambda \varepsilon \varsigma$
 $v \alpha \pi \varepsilon \rho เ \gamma \rho \dot{\alpha} \psi o u v$ $\tau \alpha$ а $\alpha о \tau \varepsilon \lambda \dot{\varepsilon} \sigma \mu \alpha \tau \alpha$ $\alpha \pi$ о́ $\tau \eta \nu \varepsilon \kappa \tau \varepsilon ̇ \lambda \varepsilon \sigma \eta ~ \tau \eta \varsigma ~ v \pi \eta \rho \varepsilon \sigma i \alpha \varsigma$.
 ó $\rho \circ \zeta$ system call $\gamma / \alpha \tau \eta \nu \pi \varepsilon \rho \iota \gamma \rho \alpha \varphi \eta \quad \tau \omega \nu$ $\mu \eta \chi \alpha v i \sigma \mu \dot{v} \alpha \cup \tau \eta \dot{\varsigma} \tau \eta \varsigma \mu \circ \rho \varphi \eta ் \varsigma$.

B． 3 АПАРІ＠MHटH YПHPE

 $\varepsilon v o ̇ \varsigma ~ \mu ı к \rho о и ́ ~ \Lambda . \Sigma . ~ N o \mu i \zeta о и \mu \varepsilon ~ o ̇ \tau ı ~ \eta ~$

 $\gamma \varepsilon v i \kappa \varepsilon ́ \varsigma ~ к \alpha \tau \eta \gamma о р і \varepsilon \varsigma ~ \sigma u ̈ \mu \varphi \omega v \alpha \mu \varepsilon$ то $\dot{\varepsilon} \rho \gamma о$ π ои $\pi \rho о \sigma \varphi \varepsilon ́ \rho о u v$.

B．3．1 EKTEAEEH KAI EAETXOL EPFOY（JOB EXECUTION AND CONTROL）

 ム．इ．$\pi \rho о \sigma \varphi \varepsilon \rho \varepsilon \iota ~ \tau \eta ~ \delta \cup v \alpha \tau о ̇ \tau \eta \tau \alpha ~ к \alpha \tau \alpha-$ бкعטท்ร $\pi \rho о \gamma \rho \alpha \mu \mu \dot{\alpha} \tau \omega \nu \quad \mu \varepsilon \quad \tau \alpha$ олоі α

 $\pi \rho \omega ் \tau \eta \beta \alpha \sigma \iota \kappa \dot{\eta} \pi \rho \circ \delta \iota \alpha \gamma \rho \alpha \varphi \dot{\eta}, \beta \dot{\alpha} \zeta о \nu \mu \varepsilon \tau \eta \nu$ เк α vó $\eta \tau \alpha$ тоv $\Lambda . \Sigma . v \alpha$ $\delta t \alpha \chi \varepsilon เ \rho i \zeta \varepsilon \tau \alpha \iota ~ \tau \eta v$ $\tau \alpha v \tau o ̇ \chi \rho \circ \vee \eta \varepsilon \kappa \tau \dot{\varepsilon} \lambda \varepsilon \sigma \eta \pi \rho \circ \gamma \rho \alpha \mu \mu \alpha \dot{\tau} \omega v$ ó－ $\pi \omega \varsigma ~ \tau \eta \nu \kappa \alpha \theta$ орі $\sigma \alpha \mu \varepsilon$ ото $\pi \rho о \eta \gamma \circ$ й $\mu \varepsilon v o$ $\dot{\alpha} \rho \theta \rho \circ \alpha \cup \tau \eta \dot{\varsigma} \tau \eta \varsigma \sigma \varepsilon ı \rho \alpha ́ \varsigma . M \dot{\varepsilon} \sigma \alpha \sigma^{\prime} \alpha \cup \tau o ̇$ то
 $\mu i \alpha$ $\sigma \varepsilon \iota \rho \dot{\alpha} \alpha \pi \dot{\partial}$ v $\pi \eta \rho \varepsilon \sigma i \varepsilon \varsigma:$

 $\alpha \rho \chi i \zeta \circ \circ \mu \varepsilon \tau \eta \nu \varepsilon \kappa \tau \varepsilon \lambda \varepsilon$－ oŋ $\varepsilon v o ̇ \varsigma ~ \pi \rho о \gamma \rho \dot{\alpha} \mu \mu \alpha \tau о \varsigma$.
$\Pi \rho ı v \pi \rho о \chi \omega \rho \eta \dot{\sigma} \sigma \cup \mu \varepsilon \pi \iota \circ$ к $\dot{\tau} \omega, \pi \rho \dot{\varepsilon} \pi \varepsilon \iota$ $v \alpha \kappa \dot{\alpha} v o v \mu \varepsilon \mu i \alpha \mu \kappa \kappa \rho \dot{\eta} \pi \alpha \rho \dot{\varepsilon} v \theta \varepsilon \sigma \eta \pi \rho о \kappa \varepsilon ⿺-$

 （ancestor）$\kappa \alpha \iota$＂α ȯ $\gamma o v o ̧$＂（descendant） $\pi \varepsilon \rho เ \gamma \rho \dot{\alpha} \varphi \circ \cup \nu \alpha v \tau i \sigma \tau o \iota \chi \alpha \tau \eta \sigma \chi \varepsilon \dot{\varepsilon} \sigma \eta \mu \varepsilon \tau \alpha-$ $\xi \dot{v}$ тоט $\pi \rho \circ \gamma \rho \dot{\alpha} \mu \mu \alpha \tau \circ \varsigma \pi 0 \cup \zeta \eta \tau \dot{\varepsilon} \varepsilon \iota ~ \tau \eta v$ טлпреббi α ка兀 тou каเvoúpıov $\pi \rho о \gamma \rho \alpha \dot{\mu} \mu-$

 $\pi \rho о \tau \varepsilon \rho \alpha t o ̇ \tau \eta \tau \alpha \varepsilon \kappa \tau \dot{\varepsilon} \lambda \varepsilon \sigma \eta \varsigma$ тov $\alpha \pi \circ$ ソo่vou
（execution priority）$\sigma \varepsilon \sigma \chi \dot{\varepsilon} \sigma \eta \mu \varepsilon \dot{\alpha} \lambda \lambda \alpha$

 $\pi \rho о \gamma$ óvov каı тov $\alpha \pi$ оүȯvov．$\Sigma \chi \varepsilon \tau \iota \kappa \alpha \dot{\mu} \mu \varepsilon$

－H $\pi \rho \omega \dot{\tau} \eta$ हлiдoүŋं $\varepsilon i v \alpha l ~ v \alpha ~ \varepsilon v \varepsilon \rho \gamma o-~$
 $\varepsilon v \dot{\omega}$ о $\pi \rho \delta \dot{\gamma} \circ \vee \circ \varsigma \mu \dot{\varepsilon} \chi \rho \iota \nu \alpha$ t $\varepsilon \lambda \varepsilon เ \omega ் \sigma \varepsilon \iota$ то غ̇рүо тоט α лоүóvou．

 $\varepsilon v \tau o \lambda \eta \dot{\varsigma}(\alpha \pi \dot{\varepsilon} \dot{\varepsilon} v \alpha \alpha \pi \dot{\gamma} \gamma \circ v o) \delta \varepsilon v \mu \pi о \rho \varepsilon i \tau \varepsilon$ $v \alpha \delta \dot{\omega} \sigma \varepsilon \tau \varepsilon \mu i \alpha \dot{\alpha} \lambda \lambda \eta \varepsilon v \tau \circ \lambda \dot{\eta}(o \pi \rho o \dot{\gamma} \circ v o \varsigma$ ， $\delta \eta \lambda$ ．то $\pi \rho o \dot{\gamma} \rho \alpha \mu \mu \alpha$ CLI $\pi \varepsilon \rho \mu \mu \dot{\varepsilon} v \varepsilon$ т то

－H $\delta \varepsilon \dot{\tau} \tau \varepsilon \rho \eta \varepsilon \pi i \lambda o \gamma \eta \dot{\eta}$ ，$\varepsilon i v a ı \eta$ $₹ v \varepsilon \rho \gamma o-$
 $\Sigma \tau \eta v \pi \varepsilon \rho i \pi \tau \omega \sigma \eta$ बu $\bar{\eta}, \eta \varepsilon \kappa \tau \dot{\varepsilon} \lambda \varepsilon \sigma \eta$
 $\pi \alpha \rho \varepsilon v \varepsilon \rho \gamma \varepsilon \epsilon \alpha \sigma \tau \eta \lambda \varepsilon \iota \tau \circ \cup \rho \gamma i \alpha$ тоט $\pi \rho \circ-$
 $\gamma \eta \dot{\varsigma}, \mu \pi о \rho \varepsilon i \tau \varepsilon v \alpha \tau \eta \delta \iota \alpha \pi \iota \sigma \tau \omega ் \sigma \varepsilon \tau \varepsilon \alpha \nu$
 $\pi \omega \sigma \eta) \delta \varepsilon \sigma \alpha \varsigma \varepsilon \mu \pi \sigma \delta i \zeta \varepsilon \iota \alpha \pi \dot{\text { o }}$ тo $v \alpha$ $\alpha \rho \chi i \sigma \varepsilon \tau \varepsilon \mu i \alpha \delta \varepsilon \cup \dot{\tau} \varepsilon \rho \eta \varepsilon \nu \tau \circ \lambda \eta$ ．
－H трiтŋ $\varepsilon \pi ı \lambda о \gamma \dot{\eta}, ~ \varepsilon i v \alpha ı \eta \varepsilon v \varepsilon \rho \gamma о \pi о i \eta-$ oŋ $\varepsilon v o ́ s ~ \varepsilon \xi ̌ \alpha \rho \tau \eta \mu \varepsilon ் v o v ~ a \pi o \gamma o j v o v . ~ H ~$
 $\dot{\varepsilon} v \alpha \pi \rho o ́ \gamma \rho \alpha \mu \mu \alpha \alpha v \alpha \lambda \alpha \mu \beta \dot{\alpha} v \varepsilon ı$ то ро́ $\lambda о$ тоט $\varepsilon \lambda \varepsilon \gamma \kappa \tau ท \dot{\gamma} \gamma, \alpha \mu i \alpha$ о $\mu \dot{\alpha} \delta \alpha \pi \rho \circ \gamma \rho \alpha \mu-$
 кoıvó દ̇pүo．
 $\gamma \varepsilon เ \varepsilon \varsigma:$
－$\Sigma \varepsilon \pi \varepsilon \rho i \pi \tau \omega \sigma \eta \pi \sigma \cup \tau \varepsilon \rho \mu \alpha \tau \iota \tau \varepsilon i \quad \eta$
 $\tau \varepsilon \rho \mu \alpha \tau i \zeta \varepsilon \iota \tau \eta \nu \varepsilon \kappa \tau \varepsilon ̇ \lambda \varepsilon \sigma \eta \dot{\partial} \lambda \omega \nu \tau \omega v$ $\alpha \pi \sigma \gamma \dot{\sigma} \omega \omega$ ．
－$\Sigma \varepsilon \pi \varepsilon \rho i \pi \tau \omega \sigma \eta \pi o v \tau \varepsilon \rho \mu \alpha \tau \iota \sigma \tau \varepsilon i \quad \eta$ $\varepsilon \kappa \tau \dot{\varepsilon} \lambda \varepsilon \sigma \eta$ हvós aлó tous a π oүỏvous то $\Lambda . \Sigma$ ．$\pi \rho \dot{\varepsilon} \pi \varepsilon \iota \quad v \alpha \pi \rho \circ \sigma \varphi \dot{\varepsilon} \rho \varepsilon \iota \quad \dot{\varepsilon} v \alpha$
 $\pi \rho$ óरovo $\gamma \iota \alpha$ то $\gamma \varepsilon \gamma \circ$ оós．
K $\lambda \varepsilon i v o v \tau \alpha \varsigma ~ \tau \eta \nu \pi \alpha \rho \varepsilon ̇ v \theta \varepsilon \sigma \eta, \sigma \cup v \varepsilon \chi i \zeta$ ou－ $\mu \varepsilon \mu \varepsilon \tau \eta v \pi \alpha \rho \dot{\alpha} \theta \varepsilon \sigma \eta \tau \omega \nu$ v $\pi \eta \rho \varepsilon \sigma i \grave{\omega} v, \pi \circ \nu$ бкото̇ غ̇ χ оuv va avтоцатотоเท่оouv 兀ıs

 $\gamma 1 \alpha \tau \eta \delta t \alpha \kappa \circ \pi \eta ่ \tau \eta \zeta \varepsilon \kappa \tau \varepsilon \lambda \varepsilon \sigma \eta \zeta$ $\varepsilon v o ́ s ~ \pi \rho о \gamma \rho \alpha \dot{\mu} \mu \alpha \tau о \varsigma$.
Oı $\delta \iota \alpha \delta ı \kappa \alpha \sigma i \varepsilon \varsigma ~ \delta เ \alpha к о \pi ท ่ \varsigma ~ \tau \eta \varsigma ~ \varepsilon к \tau \varepsilon ̇ \lambda \varepsilon-~$ $\sigma \eta \varsigma \varepsilon v o ̇ \varsigma \pi \rho \circ \gamma \rho \dot{\alpha} \mu \mu \alpha \tau \circ \varsigma, \varepsilon \xi \zeta \alpha \rho \tau \dot{\omega} v \tau \alpha \iota \alpha \pi \dot{\circ}$
 $\pi \rho \dot{\gamma} \gamma o v o ́ ~ \tau o v, ~ o ́ \pi \omega \varsigma ~ \pi \varepsilon \rho ı \gamma \rho \alpha \dot{\alpha} \varphi \tau \eta \kappa \alpha v \sigma \tau \eta v$ $\pi \alpha \rho o v \sigma i \alpha \sigma \eta$ тทऽ vinpeवiac EXECUTE． －WAIT ：$\Delta \downarrow \alpha \kappa o ̇ \pi \tau \varepsilon \iota ~ \tau \eta \nu \varepsilon \kappa \tau \varepsilon ̇ \lambda \varepsilon \sigma \eta$ тоט $\pi \rho о \gamma \rho \alpha \dot{\mu} \mu \alpha \tau 0 \varsigma \gamma \downarrow \alpha$

 ઈાаколท்ร．
－GET MSG：To $\pi \rho o ̉ \gamma \rho \alpha \mu \mu \alpha$ $\eta \tau \alpha \dot{\varepsilon} \imath \downarrow \alpha$
$\pi \dot{\alpha} \rho \varepsilon \iota \quad$ о́оьо $\mu \dot{\eta} v \cup \mu \alpha$ v－ $\pi \dot{\alpha} \rho \chi \varepsilon \iota(\dot{\varepsilon} \chi \varepsilon \iota \sigma \tau \alpha \lambda \varepsilon i) \sigma \varepsilon$ к $\dot{\pi}$ оı α « θ vрi $\delta \alpha \mu \eta \nu \nu \mu \dot{\alpha}-$ $\tau \omega \mathrm{v}$ ．
－SEND MSG：$\Sigma \tau \dot{\varepsilon} \lambda v \varepsilon \varepsilon ~ \dot{\varepsilon} v \alpha \mu \eta \dot{\nu} v \mu \alpha$ $\sigma \varepsilon \kappa \dot{\alpha} \pi 0 t \alpha « \theta \cup \rho i \delta \alpha »$.
－ACK MSG：O $\pi \alpha \rho \alpha \lambda \eta \pi \tau \eta \varsigma \varepsilon v o ̇ \varsigma ~ \mu \eta$－
 $\delta ı \alpha \delta ı \kappa \alpha \sigma i \alpha$ हлє $\xi \varepsilon \rho \gamma \alpha \sigma i \alpha \varsigma$ тоט $\mu \eta v$ vi $\mu \alpha \tau \circ \varsigma \dot{\varepsilon} \chi \varepsilon \iota ~ \tau \varepsilon-$ $\lambda \varepsilon \iota \omega \sigma \varepsilon$ ．
 $\dot{\varepsilon} v \alpha \quad \mu \eta \chi \alpha v i \sigma \mu o ̇$ erıкotvตvias $\mu \varepsilon \tau \alpha \xi \dot{u}$ $\pi \rho \circ \gamma \rho \alpha \mu \mu \dot{\alpha} \tau \omega v$. T $\alpha \pi \rho \circ \gamma \rho \dot{\alpha} \mu \mu \alpha \tau \alpha \varepsilon \pi \iota \kappa o t-$

 бколо́ $\alpha \pi \dot{\varepsilon} \dot{\varepsilon} v \alpha \pi \rho \dot{\gamma} \gamma \rho \alpha \mu \mu \alpha$ ．Ө $\alpha \alpha v \alpha \beta \dot{\alpha} \lambda o v-$ $\mu \varepsilon \tau \eta v \pi \alpha \rho o v \sigma i \alpha \sigma \eta$ тov $\mu \eta \chi \alpha v i \sigma \mu \circ$ ن́ $\alpha v \tau \alpha \lambda \lambda \alpha \gamma \eta \dot{\varsigma} \mu \eta v \cup \mu \alpha \dot{\tau} \omega \nu \gamma 1 \alpha \alpha \rho \gamma \dot{\tau} \tau \varepsilon \rho \alpha$.
－SEND SIG：$\Sigma \tau \dot{\varepsilon} \lambda \nu \varepsilon \iota \varepsilon \varepsilon v \alpha \sigma \dot{\eta} \mu \alpha \sigma \varepsilon \dot{\varepsilon} v \alpha$ ко̇ μ ßо．
－GET SIG：$\because \varepsilon \rho \iota \mu \dot{\varepsilon} v \varepsilon t \dot{\varepsilon} v \alpha \sigma \dot{\eta} \mu \alpha \sigma \varepsilon \dot{\varepsilon} v \alpha$ ко́ μ ßо．
Ot $\delta \dot{o} \alpha \alpha \cup \tau \dot{\varepsilon} \varsigma ~ \varepsilon v \tau о \lambda \dot{\varepsilon} \varsigma, \pi \rho о \sigma \varphi \dot{\varepsilon} \rho \circ \cup v \vee \dot{\varepsilon} v \alpha$
 $\dot{\eta} \pi \varepsilon \rho เ \sigma \sigma о \tau \dot{\varepsilon} \rho \omega \nu \quad \pi \rho \sigma \gamma \rho \alpha \mu \mu \dot{\alpha} \tau \omega v$ ．$\Theta \alpha$ $\alpha v \alpha \beta \dot{\alpha} \lambda о \cup \mu \varepsilon$ т $\eta \nu \pi \alpha \rho о \cup \sigma i \alpha \sigma \eta$ к $\alpha \iota ~ \alpha \cup \tau о \dot{~}$

－PRIORITY：A $\lambda \lambda \dot{\alpha} \zeta \varepsilon \iota \tau \eta v \pi \rho о \tau \varepsilon \rho \alpha เ o ̇-$
 $\pi \rho о \gamma \rho \alpha \dot{\mu} \mu \alpha \tau о \varsigma$.

B．3．1．1 EMMELE YПHPELIE

Mè $\sigma \alpha$ ото $\gamma \varepsilon v ı к о ̇ \tau \varepsilon \rho о ~ \pi \lambda \alpha i \sigma ı o ~ \tau \eta ร$
 $\pi \rho \dot{\varepsilon} \pi \varepsilon \iota \quad v \alpha \varepsilon \pi \iota \sigma \eta \mu \alpha \dot{\nu} 0 \cup \mu \varepsilon \kappa \alpha \iota \dot{\alpha} \lambda \lambda \varepsilon \varsigma \dot{\varepsilon} \mu \mu \varepsilon-$ оєऽ $\cup \pi \eta \rho \varepsilon \sigma i \varepsilon \varsigma ~ \pi о \cup \pi \rho \varepsilon ̇ \pi \varepsilon ı ~ v \alpha \pi \rho о \sigma \varphi \varepsilon ́ \rho \varepsilon \iota ~$

 $\lambda \eta \dot{\eta} \varsigma, \alpha \lambda \lambda \dot{\alpha} \alpha \pi о \tau \varepsilon \lambda$ оüv коเvغ́ $\delta 1 \alpha \delta ı \kappa \alpha \sigma i \varepsilon \varsigma$
 $\tau \eta \varsigma \varepsilon \kappa \tau \dot{\varepsilon} \lambda \varepsilon \sigma \square \varsigma \tau \omega \nu \varepsilon \nu \tau \circ \lambda \dot{\omega} v$ ．Е $\pi \varepsilon เ \delta \dot{\eta} \alpha \cup \tau \dot{\varepsilon} \varsigma$
 $\varepsilon \kappa \tau \dot{\varepsilon} \lambda \varepsilon \sigma \eta \varsigma \tau \omega \nu$ $\varepsilon v \tau \circ \lambda \dot{\omega} v$ ，o $\sigma \chi \varepsilon \delta \iota \alpha \sigma \mu \circ \zeta$ каı η טлотоi$\eta \sigma \dot{\eta}$ тous каӨopi弓ouv $\tau \eta v$ عuко $\lambda i \alpha$ हлıкoıvตvias $\mu \varepsilon \tau \alpha \xi \dot{u}$ тои $\pi \rho \circ-$

 $\varphi \alpha \dot{\varepsilon} \varepsilon \iota \alpha$ ）．

$\Sigma \tau \eta \gamma \varepsilon v \iota \kappa \dot{\eta} \alpha \cup \tau \eta \dot{\kappa} \kappa \alpha \tau \eta \gamma \circ \rho i \alpha, \pi \varepsilon \rho \iota \lambda \alpha \mu-$
 عivat $1 \delta 1 \alpha i \tau \varepsilon \rho \alpha$ र $\varnothing \eta \dot{\sigma} \mu \varepsilon \varsigma$ бє $\sigma \cup \sigma \tau \eta \dot{\mu} \mu \tau \alpha$ batch $\kappa \alpha \iota$ time－sharing．$\Sigma \varepsilon \mu i \alpha$ oùvтo $\mu \eta$ $\pi \varepsilon \rho і \lambda \eta \psi \eta \quad \theta \alpha \sim \alpha \varphi \dot{\varepsilon} \rho \circ \cup \mu \varepsilon$ ：
－To óvoца каı тov кшסıкȯ $\pi \rho о \sigma \pi \varepsilon$－ $\lambda \alpha \sigma \eta \varsigma$（password）$\tau 0 \cup \chi \rho \eta \dot{\sigma} \sigma \eta$ ．
－T $\boldsymbol{\eta} \sigma \cup \lambda \lambda \sigma \gamma \dot{\eta} \gamma 1 \alpha \lambda о \gamma ו \sigma \tau \iota \kappa \eta \dot{\chi} \chi \eta \dot{\sigma} \eta$ ，

$\alpha \pi \dot{\delta} \tau \alpha \pi \rho о \gamma \rho \alpha \dot{\mu} \mu \alpha \tau \alpha$ 兀оט $\chi \rho \dot{\jmath} \sigma \tau \eta \kappa \alpha$ $\tau 0 \cup \dot{o} \gamma \kappa \circ \cup \tau \omega \nu \varepsilon \gamma \gamma \rho \alpha \varphi \dot{\omega} \nu$ रоט $\sigma \varepsilon$ $\alpha \rho \chi \varepsilon i \alpha$ ．
 $\chi \rho \eta ் \sigma \tau \eta$ $\sigma \varepsilon$ орเ $\sigma \mu \varepsilon ் \varepsilon \varsigma ~ v \pi \eta \rho \varepsilon \sigma i \varepsilon \varsigma ~ \dot{~}$ $\kappa \alpha \imath ~ \sigma \varepsilon$ орıб $\mu \dot{\varepsilon} v \varepsilon \varsigma ~ \sigma \cup \sigma \kappa \varepsilon \cup \varepsilon ̇ \varsigma$.
－Evголıбرós $\lambda \alpha \theta \dot{\omega} v \lambda \varepsilon \iota \tau o u p \gamma i a s$
То $\Lambda . \Sigma ., \pi \rho \varepsilon \pi \varepsilon \varepsilon \iota \quad v \alpha \varepsilon v \tau 0 \pi i \zeta \varepsilon \iota \tau \iota \zeta \varepsilon \xi \dot{\eta} \zeta$ катпүорієऽ $\lambda \alpha \theta \dot{\omega} v \lambda \varepsilon \iota \tau о \cup \rho \gamma i \alpha \varsigma:$
－B $\lambda \dot{\alpha} \beta \varepsilon \varsigma ~ \cup \lambda \iota к o u ́ ~ \pi o u ~ \varepsilon \pi \eta \rho \varepsilon \alpha ́ \zeta o u v ~ т ा ~$ $\lambda \varepsilon \iota \tau o \cup \rho \gamma i \alpha \dot{\alpha} \lambda \omega v \tau \omega \nu \pi \rho \circ \gamma \rho \alpha \mu \mu \dot{\alpha} \tau \omega v$ ， $\dot{\text { ó } \pi \omega \varsigma ~ \pi \cdot \chi . ~} \mu 1 \alpha$ є $\pi \varepsilon \rho \chi \dot{\rho} \mu \varepsilon \vee \eta ~ \alpha \pi \dot{\omega} \lambda \varepsilon ו 0$ p $\varepsilon \dot{u} \mu \alpha \tau \circ \varsigma$（power failure）．
 π ou $\varepsilon \pi \eta \rho \varepsilon \alpha \dot{\alpha} \zeta$ ouv $\tau \eta \lambda \varepsilon \iota \tau o u \rho \gamma i \alpha$ عvós μ о்о $\pi \rho о \gamma \rho \dot{\alpha} \mu \mu \alpha \tau о \varsigma, \dot{\circ} \pi \omega \varsigma \quad \pi \cdot \chi . \eta$ $\kappa \alpha \kappa ท ் ~ \lambda \varepsilon ı \tau о \cup \rho \gamma i \alpha ~ \varepsilon v o ̇ \varsigma ~ \tau \varepsilon \rho \mu \alpha \tau ı к о и ̆, ~ \dot{~}$ $\eta \pi \rho о \sigma \omega \rho ı v \eta \dot{(;)} \alpha \delta \nu v \alpha \mu i \alpha \pi \rho o \dot{\sigma} \beta \alpha \sigma \eta ;$ $\sigma \varepsilon \dot{\varepsilon} v \alpha \alpha \rho \chi \varepsilon i o$.
 $\varepsilon v o ̇ \varsigma ~ \pi \rho о \gamma \rho \alpha \dot{\alpha} \mu \mu \tau \circ \varsigma, \dot{\circ} \pi \omega \varsigma \pi \cdot \chi$ ． $\varepsilon v \tau \circ \lambda \eta \dot{\eta} v \alpha \delta \iota \alpha \beta \alpha \dot{\sigma} \sigma \circ \cup \mu \varepsilon \delta \varepsilon \delta \circ \mu \varepsilon \dot{\varepsilon} \alpha \alpha \pi \dot{\partial}$ $\dot{\varepsilon} v a v \varepsilon \kappa \tau \cup \pi \omega \tau \eta \dot{\eta}$ ．
K $\dot{\theta} \theta \varepsilon \kappa \alpha \tau \eta \gamma о \rho i \alpha \lambda \alpha \theta \dot{\omega} \nu, \delta \eta \mu$ ıои $\gamma \gamma \varepsilon i \mu i 0$ $\sigma \varepsilon \iota \rho \dot{\alpha} \alpha \pi \dot{\circ} \pi \rho \circ \beta \lambda \dot{\eta} \mu \alpha \tau \alpha$ тоט к $\alpha \theta$ орі ζ ouv $\kappa \alpha \iota$ то $\beta \alpha \theta \mu$ ó $\tau \kappa \alpha v o \pi о i \eta \sigma \eta \varsigma \tau \omega \nu \alpha \pi \alpha \iota \tau \dot{-}$ $\sigma \varepsilon \dot{\omega} \nu \mu \alpha \varsigma(\beta \lambda . \pi \rho \dot{\omega} \tau 0 \dot{\alpha} \rho \theta \rho o) . T \alpha \lambda \dot{\alpha} \theta \eta \tau \eta \xi$

 $\beta \lambda \dot{\eta} \mu \alpha \tau \alpha \sigma \varepsilon \pi \varepsilon \rho i \pi \tau \omega \sigma \eta \quad \eta \mu \tau \tau \varepsilon \lambda \omega \bar{\omega} \varepsilon \gamma \gamma \rho \omega-$
 $\kappa \alpha \tau \eta \gamma \circ \rho i \alpha$ $\lambda \alpha \theta \dot{\omega} v \quad \alpha v \tau \iota \mu \varepsilon \tau \omega \pi i \zeta$ оv $\tau \alpha \iota \mu$

 $\alpha \cup \tau \dot{\mu} \mu \alpha \tau \alpha$ η єкт $\dot{\varepsilon} \lambda \varepsilon \sigma \eta$ тоט $\pi \rho \circ \gamma \rho \dot{\alpha} \mu \mu \alpha \tau о$
 δ เор $\theta \dot{\omega} \sigma \varepsilon \iota$ то $\sigma \varphi \dot{\alpha} \lambda \mu \alpha$（ $\pi \cdot \chi \cdot$ ．«० $\varepsilon \kappa \tau \cup \pi \omega \tau \dot{\eta}$
 $\pi \rho о \tau \iota \mu \alpha \dot{\tau} \alpha \iota$ $\sigma \varepsilon$ бטбтท̇ $\mu \alpha \tau \alpha$ аvoı $\chi \tau \eta ่ \varsigma ~ \sigma \cup \mu-$ $\mu \varepsilon \tau \circ \chi \eta \dot{\eta} \varsigma$（batch，time－sharing），$\alpha \varphi \alpha \iota \rho \varepsilon i$ $\alpha \pi \dot{\text { o }}$ то $\pi \rho \dot{\gamma} \gamma \rho \alpha \mu \mu \alpha \tau \eta \nu \varepsilon \pi\left\llcorner\lambda \frac{\gamma \eta \dot{\eta}}{} \alpha v \tau \mu \varepsilon\right.$ ． $\tau \dot{\omega} \pi \iota \sigma \eta \varsigma$ тov $\lambda \dot{\alpha} \theta$ ous，$\alpha \lambda \lambda \dot{\alpha} \tau \alpha \cup \tau$ óxpovo $\varepsilon \gamma \gamma v \dot{\alpha} \tau \alpha \iota$ ò $\tau \iota$ тo $\lambda \dot{\alpha} \theta$ o̧ $\theta \alpha \alpha v \tau \iota \mu \varepsilon \tau \omega \pi \iota \sigma \tau \varepsilon$ $\sigma \omega \sigma \tau \dot{\alpha} \kappa \alpha \iota \delta \varepsilon \theta \alpha \dot{\varepsilon} \chi \varepsilon \iota \quad \varepsilon \pi \iota \pi \lambda$ окє́ ζ（ $\alpha \chi \rho \dot{\eta}$－ $\sigma \tau \varepsilon \cup \sigma \eta$ बטбкєטท่ร）$\sigma \tau \eta \mu \varepsilon \tau \varepsilon ̇ \pi \varepsilon \iota \tau \alpha$ $\lambda \varepsilon 1$

 $\theta \varepsilon i$ тo $\pi \rho o \dot{\gamma} \rho \alpha \mu \mu \alpha \gamma 1 \alpha$ тo $\lambda \dot{\alpha} \theta$ oc к каı vo $\theta \varepsilon \omega \rho \eta \theta \varepsilon i$ ò $\tau 1$ то $\theta \varepsilon \varepsilon \mu \alpha$ غ $\lambda \eta \xi \varepsilon$ ．Avтท่ $\varepsilon \pi\llcorner\lambda \circ \gamma \dot{\eta}, \mu \pi о \rho \varepsilon i$ va $\pi \rho о \tau \iota \mu \eta \theta \varepsilon i \mu$ ȯvo 0 $\sigma \cup \sigma \tau \dot{\eta} \mu \alpha \tau \alpha \kappa \lambda \varepsilon เ \sigma \tau \dot{\eta} \varsigma \sigma \cup \mu \mu \varepsilon \tau \sigma \chi \grave{\eta} \varsigma$（turnke？ systems）ó $\pi o v ~ \eta \lambda \varepsilon ı \tau o u \rho \gamma i \alpha$ ò $\lambda \omega v \tau \omega$ $\pi \rho о \gamma \rho \alpha \mu \mu \dot{\alpha} \tau \omega \nu$ ع $\lambda \dot{\varepsilon} \gamma \chi \varepsilon \tau \alpha \iota \alpha \pi$ о̇ тоv ката $\sigma \kappa \varepsilon \cup \alpha \sigma \tau \dot{\eta}$.
－$\Delta t a \chi \varepsilon i \rho เ \sigma \eta ~ \varepsilon \kappa \tau \varepsilon \dot{\varepsilon} \lambda \varepsilon \sigma \eta \varsigma$（scheduling）
To $\Lambda . \Sigma ., \pi \rho \varepsilon ̇ \pi \varepsilon \iota ~ \sigma v v \varepsilon \dot{\varepsilon} \chi \varepsilon \alpha \alpha \alpha \pi \alpha i \rho v \varepsilon$

 $\varepsilon \pi i \lambda \circ \gamma \dot{\zeta} \varsigma \pi \rho \circ \gamma \rho \dot{\alpha} \mu \mu \alpha \tau \circ \varsigma \sigma \tau \eta \nu \pi \varepsilon \rho i \pi \tau \omega \sigma$ $\pi о \cup \quad \alpha \pi \alpha \iota \tau \varepsilon i \tau \alpha \iota \alpha \lambda \lambda \alpha \gamma \dot{\eta} \kappa \alpha \iota \eta \tau \alpha \chi \cup \dot{\tau} \eta \tau$ $\varepsilon \kappa \tau \varepsilon \dot{\varepsilon} \lambda \varepsilon \sigma \eta \varsigma \tau \omega v \delta 1 \alpha \delta \iota \kappa \alpha \sigma t \dot{\omega} v \tau \eta \varsigma \alpha \lambda \lambda \alpha \gamma \dot{\eta}$
 $\lambda \varepsilon \sigma \tau \eta \dot{\gamma} \boldsymbol{\imath} \alpha$ tous χ póvous ãȯкрıoŋŋs．
 $\pi \rho о \gamma \rho \alpha \mu \mu \dot{\alpha} \tau \omega v$
То $\Lambda . \Sigma ., \pi \rho \varepsilon ̇ \pi \varepsilon \imath v \alpha \cup \pi о \sigma \tau \eta \rho i \zeta \varepsilon \imath \mu \eta \chi \alpha v t-$

 $\lambda i \sigma o v \mu \varepsilon \tau \eta \nu \pi \rho \circ \sigma \tau \alpha \sigma i \alpha \pi \rho \sigma \gamma \rho \alpha \mu \mu \dot{\alpha} \tau \omega \nu$ $\alpha \pi$ ȯ $\sigma v v \varepsilon ̇ \pi \varepsilon เ \varepsilon \varsigma ~ \lambda \alpha \theta \dot{\omega} v ~ \pi o \cup ~ \sigma \cup \mu \beta \alpha i v o u v ~ \sigma \varepsilon$ $\dot{\alpha} \lambda \lambda \alpha \pi \rho \circ \gamma \rho \dot{\alpha} \mu \mu \alpha \tau \alpha$ ．

B．3．2 EILO $\triangle O E$ KAI EEOUOE $\triangle E \Delta O M E N \Omega N$

To $\Lambda . \Sigma ., \pi \rho \dot{\varepsilon} \pi \varepsilon \iota \quad v \alpha \pi \rho \circ \sigma \varphi \dot{\varepsilon} \rho \varepsilon \iota \quad \dot{\varepsilon} v \alpha$ رооод $\mu о \rho \varphi о ~ \sigma \eta \mu \varepsilon i o ~ \varepsilon \pi \alpha \varphi \eta ं \varsigma ~(i n t e r f a c e) ~ \mu \varepsilon$

 $\tau \varepsilon \rho \iota \lambda \alpha \mu \beta \dot{\alpha} v o \cup \mu \varepsilon \tau \imath \varsigma, \sigma \cup \sigma \kappa \varepsilon \cup \varepsilon ̇ \varsigma, \tau \alpha \alpha \rho \chi \varepsilon i \alpha$, ts $\gamma \rho \alpha \mu \mu \dot{\varepsilon} \varsigma ~ \varepsilon \pi ı \kappa o เ v \omega v i \alpha \varsigma ~ \kappa \alpha \iota ~ \dot{\alpha} \lambda \lambda$ оия H／Y．

 бто $\sigma \chi \varepsilon \delta \iota \alpha \sigma \mu$ ȯ $\alpha \lambda \lambda \dot{\alpha} \kappa \alpha \iota \varepsilon \dot{\varepsilon} v \alpha$ к α оорıбтı－ só $\pi \alpha \rho \dot{\alpha} \gamma o v \tau \alpha$ $\sigma \tau \eta \nu \alpha \pi o ̇ \delta o \sigma \eta, ~ \sigma \cup v \varepsilon ̇ \pi \varepsilon i \alpha$ каı $\delta \iota \alpha \varphi \alpha{ }^{2} \varepsilon ı \alpha$ тои $\Lambda . \Sigma$ ．
 ıi α $\sigma \varepsilon ı \rho \dot{\alpha} \alpha \pi o ́ ~ v \pi \eta \rho \varepsilon \sigma i \varepsilon \varsigma:$
－CONNECT：$\Sigma v v \delta \dot{\varepsilon} \varepsilon t$ to $\pi \rho o \dot{\gamma \rho \alpha \mu \mu \alpha}$ $\mu \varepsilon \mu i \alpha \mu \mathrm{ov} \dot{\alpha} \delta \alpha \varepsilon \iota \sigma o \dot{\delta} \delta \mathrm{o} /$ ६ ξ ö́ov．
－DISCONNECT：A $\pi \circ \sigma u v \delta \varepsilon ̇ \varepsilon \iota ~ \tau о ~ \pi \rho o ̇-~$ $\gamma \rho \alpha \mu \mu \alpha \alpha \pi \dot{\delta} \mu i \alpha \mu o-$ v $\dot{\alpha} \delta \alpha$ عıбó $\delta o v / \varepsilon \xi \dot{o}-$ Sou．
－READ：Фغ́pveı $\delta \varepsilon \delta o \mu \varepsilon ̇ v \alpha ~ \alpha \pi o ́ ~ \mu i \alpha$ $\mu \circ v \alpha \dot{\delta} \alpha \alpha$ бо $\pi \rho o ́ \gamma \rho \alpha \mu \mu \alpha$ ．
－WRITE：$\Sigma \tau \dot{\varepsilon} \lambda \nu \varepsilon \iota ~ \delta \varepsilon \delta o \mu \varepsilon ̇ v \alpha \alpha \pi \dot{\partial} \mu i \alpha$ $\mu o v \alpha \dot{\delta} \alpha \alpha \tau \sigma \pi \rho o \dot{\gamma} \rho \alpha \mu \mu \alpha$ ．
－CONTROL：Eкт $\varepsilon \lambda \dot{\varepsilon} \gamma \chi \circ \cup \gamma 1 \alpha \mu i \alpha \mu \circ v \alpha \dot{\delta} \alpha$
 тоטрүiєऽ $\pi 00 \mu \pi 0 \rho \varepsilon i \quad v \alpha$ عivaı $\pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \mu \varepsilon ் \vee \varepsilon \varsigma$ a๘o hardware $\tau \eta \varsigma$ oӨȯvทऽ． （CLEAR SCREEN，READ CURSOR，WRITE CUR－ SOR，CLEAR LINE，IN－ SERT LINE，DELETE LI－ NE）．
 $\tau \alpha \tau \rho \dot{\varepsilon} \pi \circ \cup \nu \tau \eta \mu \circ \rho \varphi \dot{\eta} \tau \omega \nu$ $\chi \alpha \rho \alpha \kappa \tau \eta \dot{\rho} \omega \nu \kappa \alpha \iota \dot{\alpha} \lambda \lambda \alpha$ $\chi \alpha \rho \alpha \kappa \tau \eta \rho เ \sigma \tau เ \kappa \dot{\alpha}$ тоט ε－ $\kappa \tau \cup \pi \omega \tau \dot{\eta}$ ．
 $\pi i \zeta$ оuv $\delta \iota \alpha \varphi о \rho \varepsilon \tau \iota \kappa \alpha \dot{\alpha}$ $ך \eta \mu \varepsilon i \alpha$ $\sigma \tau 0 ~ \alpha \rho \chi \varepsilon i o ~ ท ่ \varepsilon \xi \alpha \sigma \varphi \alpha \lambda i \zeta$ ouv $\tau \eta \nu \varepsilon \gamma \gamma \rho \alpha \varphi \eta \dot{\eta} \delta \varepsilon \delta \circ \mu \varepsilon \dot{\varepsilon} \nu \omega \nu \sigma \tau \circ$ бібко．
 $\lambda \dot{\varepsilon} \varsigma \gamma \mid \alpha \tau \circ \vee \dot{\varepsilon} \lambda \varepsilon \gamma \chi \circ \tau \omega v \gamma \rho \alpha \mu-$ $\mu \dot{\omega} v$ ．

B．3．3 $\operatorname{\Delta IAXEIPILH}$ T Ω N KOIN $\Omega \mathrm{N}$ MEESN

$\mathrm{H} \tau \alpha \cup \tau o ̇ \chi \rho \circ \vee \eta$ єктє̇ $\lambda \varepsilon \sigma \eta \tau \omega \nu \pi \rho \circ \gamma \rho \alpha \mu-$ $\mu \alpha \dot{\tau} \omega v, \delta \eta \mu$ ıоир $\gamma \varepsilon i \quad \tau \eta \nu \quad \alpha v \alpha \gamma \kappa \alpha เ$ о̇ $\eta \tau \alpha$

 $\sigma \tau \iota \kappa \omega 亠 \nu \mu \varepsilon ̇ \sigma \omega v$ ．H $\varepsilon \pi \iota \lambda \sigma \gamma \dot{\eta} \tau \omega \nu \alpha \lambda \gamma o \rho i \theta-$ $\mu \omega \nu$ $\alpha \cup \tau \dot{\omega} v, \alpha \pi о \tau \varepsilon \lambda \varepsilon i$ то $\pi \rho \dot{\tau} \tau о$ ки́pıo
 $\sigma \omega \sigma \tau \eta \dot{\lambda} \lambda \varepsilon \tau \tau \circ \cup \rho \gamma i \alpha \tau \omega \nu$ v$\tau \eta \rho \varepsilon \sigma \iota \omega \nu \pi \sigma$ $\pi \rho \circ \sigma \varphi \dot{\varepsilon} \rho о \nu \tau \alpha \downarrow \alpha \pi$ о̇ то $\Lambda . \Sigma$ ．Et $\delta ⿺ \kappa o ̇ \tau \varepsilon \rho \alpha$,
 $\theta \varepsilon \mu \alpha \dot{\tau} \omega v$ ：
－$\Delta t a \chi \varepsilon i \rho t \sigma \eta ~ \mu v \eta \dot{\eta} \eta \varsigma$（memory mana－ gement）

M $\varepsilon \alpha \cup \tau$ ó тоv ó $\rho о, \pi \varepsilon \rho \iota \gamma \rho \dot{\alpha} \varphi \rho \cup \mu \varepsilon \kappa \alpha \iota \tau \eta$ $\gamma \varepsilon v ı \kappa o ́ \tau \varepsilon \rho \eta \mu о \rho \varphi \eta$（virtual memory mana－ gement $\dot{\eta}$ paging）к $\alpha \iota \tau \eta \nu$ عt δ tкȯ $\tau \varepsilon \rho \eta$ $\mu \circ \rho \varphi \eta ं$（dynamic memory allocation）．

Еठ்்，$\theta \alpha \quad \pi \alpha \rho \alpha \lambda \varepsilon i \psi о \cup \mu \varepsilon \quad \tau \eta \quad \gamma \varepsilon v ı \kappa \eta ่$ $\mu \circ \rho \varphi \dot{\eta} \quad \kappa \alpha \iota \quad \theta \alpha \quad \mu \mathrm{\lambda} \lambda \dot{\eta} \sigma о \cup \mu \varepsilon \quad \gamma \iota \alpha \quad \tau \eta \nu$

 $\pi \rho o \dot{\gamma} \rho \alpha \mu \mu \alpha \tau \eta \delta v v \alpha \tau \dot{\sigma} \tau \eta \tau \alpha$ va $\zeta \eta \tau \dot{\alpha} \kappa \alpha \iota v \alpha$

 $\pi \varepsilon \rho ı \sigma \sigma o ̇ \tau \varepsilon \rho \alpha$ ко $\mu \mu \dot{\alpha} \tau \iota \alpha \mu \nu \eta j \mu \eta \varsigma \gamma ı \alpha \tau \eta v$ $\kappa \alpha \tau \alpha \chi \dot{\omega} \rho \eta \sigma \eta \delta^{\delta} \delta \circ \mu \varepsilon \dot{v} \omega v$ ．

 $\pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma \mu$ о $\alpha \lambda \lambda \dot{\alpha} \mu \varepsilon \gamma \iota \sigma \tau о \pi \circ \iota \varepsilon i \quad \tau \eta \nu$

 $\pi \rho о \gamma \rho \alpha \mu \mu \dot{\alpha} \tau \omega v$ ．Tavтȯхроvа ó $\mu \omega \varsigma, \delta \eta$－ μ เou $\rho \gamma$ оũv $\tau \alpha \iota$ ò $\lambda \varepsilon \varsigma$ ot $\pi \rho$ оӥ π о日்̇бєıऽ $\gamma 1 \alpha$ $\pi \rho \circ \beta \lambda \eta \dot{\eta} \mu \alpha \tau \alpha$ бטvغ̇ $\pi \varepsilon เ \alpha \varsigma ~ \alpha \varphi о ⿺ 廴 ~ \eta ~ \sigma \omega \sigma \tau \eta ் ~$
 $\gamma i v \varepsilon \tau \alpha \iota \mu \varepsilon \varepsilon \cup \theta \dot{v} v \eta \tau \omega \nu \pi \rho \circ \gamma \rho \alpha \mu \mu \dot{\alpha} \tau \omega v$ каı ö $\chi \stackrel{1}{ }$ тои $\Lambda . \Sigma$ ．
 $\sigma \cup v \dot{\eta} \theta \omega \varsigma \mu \varepsilon$ ठu்o $\varepsilon v \tau 0 \lambda \varepsilon \dot{\varepsilon}$ ：
－GET MEM：$\Delta \mathrm{iv} \mathrm{\varepsilon ı}$ $\sigma \tau о ~ \pi \rho o \dot{\gamma} \rho \alpha \mu \mu \alpha$
 $\mu \nu \dot{\eta} \mu \eta$ ．
－RET MEM：To $\pi \rho \dot{\partial} \gamma \rho \alpha \mu \mu \alpha \varepsilon \pi \iota \sigma \tau \rho \dot{\varepsilon}-$ $\varphi \varepsilon ⿺$ то ко $\mu \mu \alpha \dot{\tau} \mu \vee \eta \dot{\mu} \eta$ s．
 $\mu \varepsilon \dot{\varepsilon} \sigma \omega v$
$\Sigma \tau \alpha$ טло入оүıбтıк $\mu \varepsilon ̇ \sigma \alpha, \pi \varepsilon \rho เ \lambda \alpha \mu \beta \dot{\alpha}-$

 $\pi \rho о \sigma \varphi \dot{\varepsilon} \rho \varepsilon$ то $\sigma \dot{\sigma} \sigma \tau \eta \mu \alpha$ ．O opıஎ μ ỏs tทs
 $\pi \varepsilon \rho เ \gamma \rho \alpha \varphi \eta \dot{~ \tau о ง ~} \mu \eta \chi \alpha v i \sigma \mu$ ои่ $\tau \eta$ ：

 $\mu \varepsilon ̇ \sigma o u$.
 $\gamma ı \alpha$ غ̇va χ роviкó $\delta \iota \alpha \dot{\alpha} \tau \eta \mu \alpha$ ．
－To $\pi \rho o ́ \gamma \rho \alpha \mu \mu \alpha$ عıঠолоเ $\varepsilon і$ то $\Lambda . \Sigma$ ．ò тı $\delta \varepsilon \quad \chi \rho \varepsilon \iota \alpha \zeta \varepsilon \tau \alpha \iota \quad \pi \iota \alpha \quad \alpha \pi о \kappa \lambda \varepsilon เ \sigma \tau \iota к ท ่$

Avtó π ou عival onuavtıkó，عival o
 $\delta \varepsilon v \mu \pi о \rho \varepsilon i$ va $\delta 0 \theta \varepsilon i \gamma 1 \alpha \tau i$ то $\mu \varepsilon ̇ \sigma o v$ ท่ $\delta \eta$

 $\pi \mathrm{ou}$ غ̇ $\chi 0 \cup \mu \varepsilon$ عivat δ ט̇o：
－ $\mathrm{H} \varepsilon \kappa \tau \varepsilon \dot{\varepsilon} \lambda \varepsilon \sigma \eta$ тоט $\pi \rho \circ \gamma \rho \alpha \dot{\alpha} \mu \mu \tau \sigma \zeta \sigma \tau \alpha-$ $\mu \alpha \tau \alpha \dot{\varepsilon \iota}$ каı то $\pi \rho o \dot{\gamma} \rho \alpha \mu \mu \alpha \pi \varepsilon \rho \iota \mu \varepsilon \dot{v \varepsilon \iota}$ $\mu \dot{\varepsilon} \chi \rho \iota \tau \eta v \alpha \pi \varepsilon \lambda \varepsilon v \theta \dot{\varepsilon} \rho \omega \sigma \eta$ тоu $\mu \dot{\varepsilon} \sigma \circ \cup$.

 $\alpha \varphi \eta \dot{\nu} \varepsilon \iota \tau \tau \varsigma \varepsilon \pi \iota \pi \tau \dot{\omega} \sigma \varepsilon \iota \varsigma \sigma \tau \eta ~ \varphi \rho о v \tau i \delta \alpha$ тоט $\pi \rho о \gamma \rho \alpha \dot{\mu} \mu \alpha \tau о \varsigma$.
 عขто入غ̧̇：
－RESERVE：To $\pi \rho o \dot{\gamma} \rho \alpha \mu \mu \alpha$ 丂 $\eta \tau \alpha \dot{\varepsilon}$ $\alpha \pi о к \lambda \varepsilon \iota \sigma \tau \iota \kappa \eta \dot{\chi \rho ท ் \sigma \eta ~ \varepsilon-~}$ vós $\mu \varepsilon ் \sigma o v$ ．
－RELEASE：To $\pi \rho o ́ \gamma \rho \alpha \mu \mu \alpha \varepsilon t \delta о \pi о t \varepsilon i$ ó $\tau \iota ~ \delta \varepsilon ~ \chi \rho \varepsilon เ \alpha \dot{\zeta} \zeta \varepsilon \tau \alpha \iota \alpha \pi 0-$ $\kappa \lambda \varepsilon เ \sigma \tau \iota к \grave{~ \chi \rho ท ் \sigma \eta ~ \tau о ט ~}$ $\mu \varepsilon ̇ \sigma o v$.

B．3．4 YПHPE IE ПАНРОФОРНГНЕ

 $\sigma \chi \varepsilon \delta \iota \alpha \sigma \tau \dot{\eta}$ ，α о̇ то $\mu \varepsilon \dot{\varepsilon} \varepsilon \theta$ оऽ τ то H / Y к $\alpha \iota$

 $\alpha \pi \alpha \dot{\tau} \eta \eta \sigma \eta$ $\sigma \varepsilon \mu i \alpha \pi$ по $\lambda \dot{u} \gamma \varepsilon v \iota \kappa \eta \dot{\varepsilon} \varepsilon \rho \dot{\tau} \tau \eta \sigma \eta$ ： «Tı $\theta \alpha \theta \dot{\varepsilon} \lambda \alpha \tau \varepsilon \vee \alpha \xi \dot{\varepsilon} \rho \varepsilon \tau \varepsilon \alpha \pi$ ó $\tau \alpha \sigma \tau о \tau \chi \varepsilon i \alpha$ $\pi 0 \cup \delta ı \alpha \chi \varepsilon \rho i \zeta \varepsilon \tau \alpha \iota$ то $\Lambda . \Sigma$ ．；＂．Eठ $\dot{\omega} \theta \alpha$ $\pi \rho о \sigma \pi \alpha \theta \dot{\eta} \sigma о \cup \mu \varepsilon \quad v \alpha$ हvto \quad iбov $\mu \varepsilon$ ह̇v α

－WHO AM I：To $\pi \rho o \dot{\gamma} \rho \alpha \mu \mu \alpha \zeta \eta \tau \alpha \dot{\varepsilon}$ $v \alpha \mu \dot{\partial} \theta \varepsilon \iota ~ \tau \eta \nu \tau \alpha \cup \tau o \dot{\tau} \tau \tau \alpha$ qou．
 $v \alpha \mu \dot{\alpha} \theta \varepsilon \iota ~ \tau \eta v \dot{\omega} \rho \alpha$ ．
－GET DATE：To $\pi \rho o \dot{\gamma} \rho \alpha \mu \mu \alpha$ Һ $\eta \tau \alpha \dot{ }$－ $v \alpha \mu \alpha \dot{\theta} \varepsilon \iota ~ \tau \eta v \eta \mu \varepsilon \rho о \mu \eta-$ via．
－MEMORY：To $\pi \rho o \dot{\gamma} \rho \alpha \mu \mu \alpha \zeta \eta \tau \alpha \dot{\varepsilon} v \alpha$
 $\mu \eta$ v $\pi \dot{\alpha} \rho \chi \varepsilon \iota \gamma 1 \alpha \kappa \alpha \tau \alpha \gamma \rho \alpha-$ $\varphi \eta \dot{\eta} \delta \varepsilon \delta \circ \mu \varepsilon ் v \omega v$ ．
－DISC：To $\pi \rho o \dot{\gamma \rho \alpha \mu \mu \alpha ~ \zeta \eta \tau \alpha ̇ \varepsilon t ~ v \alpha ~}$ $\mu \dot{\alpha} \theta \varepsilon ו \quad \pi \dot{\sigma} \sigma \circ \varsigma ~ \alpha к о ் \mu \eta \quad \chi \dot{\omega} \rho \circ \varsigma$
 $v \omega v$ ．
$\Sigma \tau o \varepsilon \pi o \dot{\mu} \mu v o \dot{\alpha} \rho \theta \rho o, \dot{\varepsilon} \chi о v \tau \alpha \varsigma$ ṽȯ $\psi \eta \tau \tau \varsigma$
 $\alpha \sigma \chi \circ \lambda \eta \theta$ ой $\mu \varepsilon \mu \varepsilon$ то $\sigma \chi \varepsilon \delta t \alpha \sigma \mu$ ȯ тоט $\mu \circ v \tau \dot{\varepsilon} \lambda \frac{1}{} \lambda \varepsilon \tau \tau o u \rho \gamma i \alpha c$.

SYSTIME S 300

TOY ANAETAEIOY TEOГГANH
 SYSTIME sivaı $\mu i \alpha$ Bpetavikn่

H
 θ Пкк то 1972 ．Еккіи $\sigma \varepsilon \omega \varsigma$ OEM тпऽ DEC，

 ко்бцои．
 otov тон $\dot{\alpha}$ twv super micros kaı twv

 бобті்иata，та S300，IT，S600，S2600，каı S4000，ота опоіа η ıохйऽ，$\eta \mu v \tilde{\eta} \mu \eta$ каı оı

 uпа́pхєı оицßато்тŋта hardware kaı soft－
 xшріс каvéva лрї $\beta \lambda \eta \mu \alpha$.
ミтратпүוкท் тпऽ SYSTIME，eival va катабквváไधı η iбıa то system kaı application software，$\mu \varepsilon$ апот $\dot{\varepsilon} \varepsilon \sigma \mu \alpha$ va
 GTovc X X

ПРЗТН ЕNTYПЛЕН

 ＂ S ＂．Av kaı sivaı $\dot{\text { éna }}$ kaӨapá multiuser
 ноváठa：542X145X450 mm）$\delta \varepsilon v$ ari̇Xouv по $\lambda \dot{v}$ ало் autés $\tau \omega \nu$ personal computers．
Апотєлвітаı апо் тпи кеитрıкท் μ очá δa ， η опоіа $\varepsilon \cup \sigma \omega \mu a t \omega \dot{v \varepsilon ı} \frac{\tau}{\text { a }}$ floppy disk drives каı то бк入про́ ठієко о̀tav autóc avtika－

 －ठıаколтппс үıа то RESET каı о $\mu \eta \times \alpha$－

 λ дıाтoupria．

 multiuser computers tḩ SYSTIME．छعкıvíviac σ тŋv

каı 5 териатіка่．То териатіко́ тои test проврхо்таи ало́ тпи катаскеväotрıа

 хрш̈ца вкто́с апо் та плйктра тои
 апохрш̈бєс тои үкрі．

KENTPIKH MONA $\triangle A$

 8086，пои λ हוтоируві ота 5 MHz ． Проофедретаı घтїŋ̧ oav otàvtap o

 вітаи о بıкровпє६६рүабтท்ऽ 8088.
 512 K каı μ торяі va єпєкта $\begin{aligned} & \text { вi } \dot{\varepsilon} \omega く \text { с то } 1\end{aligned}$

H про́𧰨ßaon ото єоштєріко́ тои computer，петuxaivetaı घúko入a aфои் афаıрєӨzi то па̉vш каं $\lambda \cup \mu \mu \dot{\alpha}$ тои каı то

 охєठıабиó каı тп $\beta \dot{\lambda} \lambda т і \sigma \eta ~ \varepsilon к \mu \varepsilon т \alpha \dot{\lambda} \lambda \varepsilon v o n$ tou x $\dot{\rho}$ рou．
Eтnv пiow $\delta \varepsilon \varepsilon \dot{\alpha}$ үшvia，Bpioketaı η

 $\mu \varepsilon$ то кйклшиа трофобобіас．Мпробта́ акрıß̈̈с апо் то трофоботіко́，ßрібкоитаи

 тaı o controller twv floppy disk drives ka14

 8086 （CPU）каı 8087 каӨї¢ ка1 غ̇va акöца interface үІа бधוрако் port．H трітп，

THFT KOMIIOYTHP

 ov S300

 ऽІбкєт $\dot{\omega}$ ．

EПIKOINSNIE

otnv apıotepウ் үwvia，quvavtàur 5

 BOOT kaı DIAG．$\sum u v \dot{n} \theta \omega c$ ß ßіокетаı отпи пош்тп，опо்тє $\mu \varepsilon$ то ६єкіипиа тоט
 poutivec eккiunonৎ（bootstraps）．＇Otavo

aб́ákpity
натіа́ ото єбштєріко்．．．

 $\pi \varepsilon \varsigma ~ 3 ~ \mu л о р о и ̆ v ~ v a ~ \delta ı a t \varepsilon Ө o u ̈ v ~ y i a ~ i n ~$
 station），үוव धाıкоוvшvia $\mu \varepsilon$ touc $\dot{\alpha} \lambda \lambda$ дous

 нас ठпиıойрүпоє єрштпиатıк்．（Үпӧчп
 oтnv E入入äסa та S600 каı S2600 п пара́ $\lambda \lambda \eta \lambda \eta$ Өüpa घivaı otávtap）．
Eva ıбıаітеро опивіо пои афора́ тпи

 otouç Tousic hardware－software поט غ̇غघı oav arotè̀ $\lambda \sigma \mu a \eta$ η ờvठeon touc va sivaı

 коוvшviac，utápxєı η סuvatȯtnta yia бпиıоируіа тотıкш̈v бıкти̇шv（SYSLINK
 modem $\mu \dot{\varepsilon} \sigma \omega$ ап $\lambda \dot{\omega} v$ т $\eta \lambda \varepsilon \phi \omega v i к \dot{\omega} v$ ү pau－

 тпऽ петихаі泣та $\mu \varepsilon$ аито́ тои тоо́то тпи

ПЕРІФЕРЕIAKH MNHMH

O S300 हvowhatwivet દ̇va ǹ ठ்ંo floppy

 Mbyte．To drive $\tau \omega \nu 800 \mathrm{~K} \mu \dot{\mu} \lambda_{1} \sigma \tau \alpha, \mu \varepsilon \tau \eta$

 PC каı тоия compatible $\mu \varepsilon$ avtóv micros．

 бк λ n ρ oú δ ígkou twv $10 \dot{1} 20$ Mbytes． Акӧиа，о ібооя controller μ торяi va

 twv 25 Mbytes $\dot{\omega} \sigma t \varepsilon$ va петuxaivetal
 ок λ прой Síкоu．

TEPMATIKO

То териатіко் пои хрпбтиопойоацв ото teot，ท̇tan ths SYSTIME av kaı

 $\mu \varepsilon \gamma \dot{\alpha} \lambda o$ ，$\varepsilon v \dot{\omega}$ та $\pi \lambda \dot{\eta} \kappa т \rho a$ tou घivaı

 тои，ßрібкоитаı та арı θ иттıкд $\pi \lambda \dot{\eta} к т \rho \alpha$ каı арıбтерд் ало் аитд் ако入оиӨои̇v та
 QWERTY．To $\pi \lambda \dot{\text { ñктро tou } 0 \text { عivaı }}$ аркєтג் $\mu \varepsilon \gamma \dot{\lambda} \lambda$ о каı ßріокктаı μ ȯvo тои

 TAB，CAPS LOCK，RUB OUT（ σ ßウ்veו тои пропүои́ $\mu \varepsilon$ оо характท̇ра），STALL
 тои т $\rho \dot{\varepsilon} \chi о \cup \tau \alpha$ характท்ןа）к．т．λ ．

 пооүра μ атıそंццвиа（F1－F10）пои
 $\pi \lambda \dot{\eta} \kappa т \rho \alpha$ tou screen editor（ $\langle\boldsymbol{A} \boldsymbol{\gamma}\rangle$ ）

 та плйктра єкто்ৎ ало் та عıठıка́，ठivouv аuтӧ $\mu a t \eta$ हпаvá $\lambda \eta \psi \eta$ ．

H uováठa tnc oӨóunc（Syscope Video
 $\mu \eta \nu$ छ $\varepsilon \chi v \dot{\alpha} \mu \varepsilon \dot{\text { ótı }} \mu ı \lambda \dot{\alpha} \mu \varepsilon$ yıa terminal）αv kaı đúvto $\mu \alpha$ ava $\mu \dot{\varepsilon} v \varepsilon$ тaı $\mu i a$ kaıvov́pıa $\mu \varepsilon$

 character set aлo่ 96 характท்ряৎ，то
 то каı та апараітпта σ ט̇ $\mu \beta$ ß λ а．
$\Sigma \varepsilon \mu i \alpha \varepsilon \varepsilon x \omega \rho ı \sigma t \eta \dot{~ E P R O M ~ \varepsilon i v a ı ~} ү \rho a \mu-$
 характท்рєя．H $\mu \varepsilon т \dot{\alpha} ß a \neq \eta$ ало் то غ̇vа

 eppaoiac（ $\mu ı \alpha$ каı $\dot{\varepsilon} \chi о \cup \mu \varepsilon$ multiuser ои்бтпиа），va $\mu \pi о \rho \varepsilon і ~ v a ~ х \rho \eta \sigma и о л о я і-~$

 аитіпробштіас $\mu a \varsigma$ бıаßعßаiшбаи о́тı про́кєıтаı va ס山்бouv oúvtoua λ u̇on．

H ठıaүய்vıa סıáataon tnc oӨövņ عivaı

 апотв入вітаı апо் $\mu \mathrm{i} \alpha \mu \eta \dot{\tau} \rho \alpha 5 \mathrm{X} 9$ dots．To
 graphics．Oı үрафıкє́я парабта̇бвıৎ $\delta \eta$－ μ ıovpyoúvtaı $\mu \varepsilon$ block characters kaı перıоріそоитаı оибıабтıка ає ка̇лоıа
 $\rho \eta \mu \alpha т ı \alpha \dot{\alpha}$ ıбтоүра́ $\mu \mu а т \alpha$.

 Enions otnu riow ò $\psi \eta$ tךs oӨoंvns， uாápхєı каı غ̇va оєıрıако் port үıа

ヘEITOYPГIKO ミYミTHMA－Г $\Omega \Omega \Sigma \Sigma E \Sigma$ ПРОГРАММАТIEMOY

H SYSTIME avغ்ாтט६ॄ yia tou S300

 үוко் ov̇otnua，to MPS（Modular Pro－ gramming System）．Autó алотв入вi то

 multiuser λ вıтоирүієя． H етаıріа то
 үוко் RSTS／E пои хрпоюотояві η DEC

 घாाாغ்ठои о்ாшऽ BASIC－500，ANS 74. Level II Cobol，ANS77－FORTRAN kaı ISO－PASCAL．
 $\pi \lambda \dot{\eta} \theta \circ \varsigma$ апо் ап $\lambda \dot{\varepsilon} \varsigma$ عито $\lambda \dot{\varepsilon} \varsigma$（commands） каı ßопӨŋтıка่ проүра́ $\mu \mu \boldsymbol{\mu} \alpha$（utilities）

．．．каı $\boldsymbol{\eta} \boldsymbol{\pi i \sigma \omega} \boldsymbol{\text { óq }} \boldsymbol{\eta}$ ．
oßท̇vouv סıáфора apxعia ү）STATUS： Siveı tךv katáotaơ tךऽ $\mu \nu \dot{\eta} \mu \eta \varsigma$ RAM δ

 $\eta \mu \varepsilon \rho о \mu \eta v i a$ kaı $\dot{\omega} \rho a, \eta)$ SHUT：Yıа то
 RENAME，i）DELETE，ia）DIRECTORY
 givaı η عито $\lambda \dot{\eta}$ HELP η опоіа סiveı $\pi \lambda$ ṅp
 вито入ウं．

 इиүкєкрıцвंva，ठпиюорүой $\mu \varepsilon$ прш்та тп $\mu \dot{\sigma} \sigma \kappa \alpha \mu \varepsilon$ т β Вӧ்धıа тои $\pi \lambda \eta к т \rho о \lambda$ оүіои

 отоихвi ωv тпс．β ）To MFEDIT поט घivaı
 utility xáp ото опоіо о S300 סıaßа்そを

 floppy disk drive $\tau \omega \nu 800 \mathrm{~K}, ~ \delta)$ To

 ипо入оүוбтєє（S600，S2600）тךऽ бєıра́я ＂S＂．

 yia коıvய்้ apxદiшv ota опоіа غ́xouv

 uпоотпріґяı каı realtime multitasking

Екто́c апо் то MPS，O S300 μ поргі va $\delta \varepsilon \chi \theta \varepsilon і$ ако்ца каı $\dot{\alpha} \lambda \lambda \alpha$ 入єєтоирүкк่ бобті்иата о́пшс та MP／M－86，Concur－ rent CP／M－86 кaı Concurrent／DOS．

APPLICATION SOFTWARE

Подıтוкn் tnऽ SYSTIME givaı va uाo－

 Yı autouc．
To MFWORD घivaı غ̇va घטغ̇入ıkто лакغ்то word processing поט перı入ацßذ்－

 alone иполоүוттвс．To MFDATA апотв－
 base）$\varepsilon v \dot{\omega} \mu \varepsilon$ то MFREPT μ торой $\mu \varepsilon$ va

 поо்үрациа spread－sheet，то MFCALC каӨш்¢ каı то поо́үрациа MFFILE пои
 namagement twv eyYpaфüv kaı in

 єфариоүш்ш（ларакодойӨпоп атоӨп்кпऽ，

DOCUMENTATION

To documentation поט плаıбш்ขยı то

 öпшс：a）Editor operating guide，β ） Command Language and utilities Refe－ rence manual，γ ）System service manual， б）Documentation directory，ε ）Command language，or）Release notes，ท）Operating Guide，θ ）User Guide terminal к．т．λ ．Ало்

 татопиотіка́．

ミYMПEPA乏MATA

O S300 घivaı غ̀va aદıò入oyo supermicro $\mu \varepsilon$ праүиатькєє ς multiuser kaı multitasking

 биоі пои трокйттоии ато́ тпи тароибіа घvós λ हוтоирүікои் оибтท̇цатоя（MPS）
 S300，ипохшройv $\mu \pi \rho о \sigma т \dot{\alpha}$ ото фа́व α а

 owria．

ME MIA MATIA

ONOMA：SYSTIME S300
 KATAEKEYAETHE：SYSTIME COMPUTERS LTD． ANTIIPOERHOE：SYSCOMP

HARDWARE

RAM： 512 K отávtap．Me єाغ̇ктаon фӨàvย1 to 1 Mbyte．

ПЕРIФEPEIAKH MNHMH： $1 \dot{\eta} 2$ floppy disk drives $\tau \omega \vee 800 \mathrm{~K} \dot{\eta}$ tou 1 Mbyte． Hard disk drive twv 10 ท் 20 Mbytes．

SOFTWARE

 Concurrent／Dos．
ГА $\Omega \Sigma \Sigma E \Sigma$ ПPOTPAMMATIEMOY：BASIC，COBOL，FORTRAN，PASCAL． ПРОГРАММАТА ЕФАРМОГЛN：MF WORD（word processing），MF DATA （data base），MF REPT，MF CALC（spreadsheet），MF FILE．Aпó $\varepsilon \lambda \lambda \eta u I k \varepsilon ่ \varsigma ~ \varepsilon ф а \rho \mu о ү \varepsilon ̇ \varsigma ~$

[^2]H тıиウ் тоט S300 $\mu \varepsilon 800 \mathrm{~K}$ floppy disk drive， 20 Mbytes hard disk drive kaı $\dot{\varepsilon} \vee \alpha$

 проїövтшט тп¢ SYSTIME oтทи E $\lambda \lambda \dot{\alpha} \delta \alpha$ givaı η SYSCOMP．H avtırроошria

 теXVIkoú service．

MA＠HMATA ПРОГРАММАТІІМОY Σ ТН Г $\Lambda \Omega \Sigma \Sigma А$ С

MEPOE IV

$\Sigma \tau \tau \pi \rho о \tau \varepsilon \lambda \varepsilon \cup \tau \alpha i o \mu \dot{\varepsilon} \rho \circ \varsigma \tau \eta \varsigma \sigma \varepsilon \iota \rho \dot{\alpha} \varsigma \mu \alpha \theta \eta \mu \dot{\alpha} \tau \omega \nu \tau \eta \varsigma \gamma \lambda \dot{\omega} \sigma \sigma \alpha \varsigma \subset$－
 Personal Computer World－$\varepsilon \xi \varepsilon \tau \dot{\jmath} \zeta$ ov $\tau \alpha \iota \tau \alpha$ arrays，ot $\delta \varepsilon i \kappa \tau \varepsilon \varsigma ~ \kappa \alpha \iota ~ o 七 ~$

TOY：LES HAMPSON
 EПIMEAEIA：АYГ．TEIPIMתKO天．

 $\pi \omega \varsigma ~ \kappa \alpha \iota ~ \sigma \tau \iota \varsigma ~ \pi \varepsilon \rho \iota \sigma \sigma о ் \tau \varepsilon \rho \varepsilon \varsigma ~ \gamma \lambda \omega ் \sigma \sigma \varepsilon \varsigma$, $\pi \rho о к \varepsilon \iota \mu \varepsilon \dot{v o u} \gamma 1 \alpha \delta \varepsilon \delta$ о $\mu \dot{\varepsilon} v \alpha$ тоט i δ เov
 $\pi i v \alpha \kappa \varepsilon \varsigma$（arrays）．${ }^{\cdot} О \mu \omega \varsigma, \eta$ C $\pi \rho о \chi \omega \rho \dot{\alpha} \varepsilon \iota$

 nters）${ }^{1}$ ．
 $\gamma \lambda \dot{\omega} \sigma \sigma \alpha$ ，ò $\lambda \alpha \alpha v \tau \dot{\alpha}$ ழaivovtal $\mu v \sigma \tau \eta \rho เ \omega \dot{-}$
 $\sigma \alpha \nu \dot{\varepsilon} v v o \iota \varepsilon \varsigma, \alpha \lambda \lambda \dot{\alpha}$ रı $\alpha \tau i \quad \pi \rho о \sigma \varphi \varepsilon \rho \circ u v$ $\pi \lambda \eta \dot{\eta} \eta \eta$ ع $\lambda \varepsilon \cup \theta \varepsilon \rho i \alpha$ $\sigma \tau о v \pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma \tau \eta$
 $\mu \vee \eta \dot{\eta} \mu$ ．

ПINAKE （ARRAYS）

 $\tau \omega v \beta \alpha \sigma \iota \kappa \dot{\omega} v \tau \cup \dot{\pi} \omega \nu \delta \varepsilon \delta \circ \mu \varepsilon \dot{\varepsilon} \nu \omega v$ ，о́ $\pi \omega \varsigma \kappa \alpha \iota$

 $\pi i v \alpha \kappa \varepsilon \varsigma ~ \pi \iota v \alpha \dot{\kappa} \omega v$ ．Avtoi，$\delta \eta \lambda \dot{\omega} v o v \tau \alpha \iota \omega \varsigma$ $\varepsilon \xi \check{\eta} \varsigma$ ：
int myarray［25］；
／＊list of 25 int＊／

Bytes	ints	element		
\emptyset	\emptyset	［ø］［ø］	＜－－	address of start of table
1				
2 3	1	［ø］［1］		
4	2	［6］［2］		
5				
6 7	3	［0］［3］		
8	4	［ø］［4］		
${ }_{10}^{9}$	5	［1］［0］	＜－－	start of second sub－array
11				start of second sub－array
12	6	［1］［1］		
98	49	［9］［4］		

```
int array[16];
doit(array);
\(\operatorname{doit}(x)\)
int \(x[]\);
    1
    return \(x[3] * x[4]\);
    \}
```

£ 2．2：＇Evaৎ піvакац $\sigma \alpha v \pi \alpha \rho \dot{\alpha} \mu \varepsilon \tau \rho о \varsigma ~ \sigma v v \dot{\alpha} \rho \tau \eta \sigma \eta \varsigma$.
char str［256］；
／＊a list of characters forming a string＊／ in table［10］［5］
／＊2－D array of int＊／
Ot $\alpha \gamma \kappa \dot{\lambda} \lambda \varepsilon \varsigma ~ \pi \varepsilon \rho ⿺ 𠃊 \lambda \varepsilon i o u v$ то $\pi \lambda \dot{\eta} \theta \circ \varsigma \tau \omega \nu$ $\sigma \tau 0 \chi \varepsilon i \omega v$ тou array．इтo $\pi \alpha \rho \alpha \pi \alpha \dot{ }$ ．ω $\pi \alpha \rho \dot{\alpha} \delta \varepsilon \iota \gamma \mu \alpha, \delta \eta \lambda \dot{\omega} v \varepsilon \tau \alpha \iota$ array π оט $\pi \varepsilon \rho t \varepsilon$－ $\chi \varepsilon \iota 10$ arrays，то к $\alpha \theta \dot{\varepsilon} v \alpha \mu \varepsilon 5$ бто七 $\chi \varepsilon i \alpha$ ． Mỏvo $\sigma \tau \alpha \theta \varepsilon \rho \varepsilon ̇ \varsigma ~ \mu \pi о \rho o u ́ v ~ v \alpha ~ \chi \rho \eta \sigma \iota \mu$－ $\pi \circ \imath \eta$ Өoúv $\sigma \tau \iota \varsigma ~ \delta \eta \lambda \omega ் \sigma \varepsilon ı \varsigma, ~ \sigma \cup v \varepsilon \pi \dot{\omega} \varsigma ~ \tau о ~$ $\mu \varepsilon \dot{\varepsilon} \gamma \varepsilon \theta o \varsigma \tau \omega v$ arrays $\varepsilon i v \alpha \iota ~ \sigma \tau \alpha \theta \varepsilon \rho o \dot{c}$ ．
H $\alpha v \alpha \varphi o \rho \alpha \dot{\alpha} \sigma \tau \alpha$ $\sigma \tau \not \chi \chi \varepsilon i \alpha$ عvós array， $\gamma \mathrm{iv} \mathrm{\varepsilon} \mathrm{\tau} \alpha \iota \mu \varepsilon \delta \varepsilon i \kappa \tau \varepsilon \varsigma$（indices），$\pi$ ои $\delta \eta \lambda \dot{\omega}$ vouv $\tau \eta \quad \alpha \chi \varepsilon \tau \iota \kappa \eta \dot{\eta} \theta \dot{\varepsilon} \sigma \eta \omega \varsigma \pi \rho \circ \varsigma \tau \eta \nu \alpha \rho \chi \dot{\eta}$ тоט array．＇Etбı，то $\pi \rho \omega \dot{\tau} о$ отоıхعio عivaı table［0］［0］к $\alpha \iota$ то т $\varepsilon \lambda \varepsilon \cup \tau \alpha i o$ table［9］［4］． $\Delta \eta \lambda \alpha \delta \dot{\eta}, \dot{\varepsilon} \chi \circ \cup \mu \varepsilon$ то $\mathbf{i} \delta \iota o \alpha \pi$ от $\dot{\varepsilon} \lambda \varepsilon \sigma \mu \alpha \sigma \alpha \nu$ $v \alpha \chi \rho \eta \sigma \iota \rho о \pi о เ о и ் \sigma \alpha \mu \varepsilon \tau \eta v \varepsilon \pi \imath \lambda о \gamma \eta \dot{\eta}$ OP－ TION BAEE \varnothing t $\eta \varsigma$ Basic．${ }^{\circ}$ I $\sigma \omega \varsigma ~ v \alpha$
 $\alpha \rho i \theta \mu \eta \sigma \eta \varsigma \tau \omega v$ бто七 $\chi \varepsilon i \omega v, \sigma \varepsilon$ бט́ $\gamma \kappa \rho \iota \sigma \eta$ $\mu \varepsilon$ रov $\pi \iota \circ \dot{\alpha} \mu \varepsilon \sigma \circ$ table［10］［5］，ó $\mu \omega \varsigma$ عivaı

 $\gamma \rho \alpha \mu \mu \varepsilon \varepsilon \varsigma$ к $\alpha \iota ~ \sigma \tau \eta ं \lambda \varepsilon \varsigma, ~ \sigma \tau \eta ~ \mu \nu \eta j \mu \eta ~ \varepsilon i v \alpha \iota$ $\kappa \alpha \tau \alpha \chi \omega \rho \eta \mu \varepsilon \dot{\varepsilon}$ оо $\sigma \alpha v \mu i \alpha$ бvv χ о̇ $\mu \varepsilon v \eta$ $\alpha \kappa о-$

 $\alpha \pi o ̇ \tau \eta \nu \alpha \rho \chi \eta$ ．
Ti $\theta \alpha \sigma \nu \mu \beta \varepsilon i \alpha v, \kappa \alpha \tau \dot{\alpha} \lambda \dot{\alpha} \theta o \varsigma, \alpha v \alpha \varphi \varepsilon \rho-$
 opi ωv тov $\delta \eta \lambda \omega \theta \dot{\varepsilon} v \tau \circ \varsigma$ array，$\alpha \varsigma \pi$ тоט̇ $\mu \varepsilon$ σ тo table［10］［5］；O compiler $\delta \varepsilon v$ $\pi \rho \dot{\kappa \varepsilon \iota \tau \alpha \iota ~ v \alpha ~ \delta \iota \alpha \mu \alpha \rho \tau \cup \rho \eta \theta \varepsilon i ~ к \alpha ı ~ \tau о ~}$
 $\delta \varepsilon \delta \circ \mu \varepsilon ் v o u$ ò $\tau \iota ~ \sigma \tau \eta v \mathrm{C}$ vлотi $\theta \varepsilon \tau \alpha \iota$ ò $\tau \iota$

 array $\delta \varepsilon \nu$ عival $\tau i \pi o \tau \varepsilon \dot{\alpha} \lambda \lambda o \quad \alpha \pi \dot{o} \mu i \alpha$ $\gamma \varepsilon v i \kappa \eta \dot{\eta} \mu \dot{\varepsilon}$ Өoठo $\pi \rho \circ \sigma \pi \dot{\varepsilon} \lambda \alpha \sigma \eta \varsigma ~ \delta \varepsilon \delta о \mu \varepsilon ̇ v \omega v$

address

contents
1234
5678


```
index (s,c)
char *s; /* pointer to the string to be searched */
char z; /* the character to search for */
    {
        while(*si=\varnothing) /* stop at end of string */
        if(*}s==c) return s; /* pointer to the character */
        8++;
        }
        return ©; /* cannot find */
    }
```


$\mu \varepsilon \chi \rho \eta \dot{\sigma} \eta \delta \varepsilon \iota \kappa \tau \dot{\omega} v . \Theta \alpha \dot{\eta} \tau \alpha v \chi \rho \dot{\sigma} \sigma \mu o v \alpha$ $\delta \eta \lambda \omega \theta \varepsilon i \mu i \alpha \alpha \kappa о \lambda 0 \cup \theta i \alpha \alpha \kappa \varepsilon \rho \alpha i \omega v$ к $\alpha \iota ~ v \alpha$

 $\pi \varepsilon \delta i \omega v \mu \varepsilon \tau \alpha \beta \lambda \eta \tau \circ \cup \dot{\mu} \mu \varepsilon \gamma \dot{\varepsilon} \theta$ ous, $\theta \alpha \pi \rho \dot{\varepsilon} \pi \varepsilon \iota$ $v \alpha \chi \rho \eta \sigma \iota \circ \pi о ı \eta$ Өoúv pointers.

I $\delta 1 \alpha i \tau \varepsilon \rho \eta$ $\sigma \eta \mu \alpha \sigma i \alpha$ غ χ ouv $\tau \alpha$ arrays $\chi \alpha \rho \alpha \kappa \tau \eta \dot{\rho} \omega v$, $\alpha \varphi \circ$ ט̇ $\eta \mathrm{C} \delta \varepsilon \delta \dot{\varepsilon} \chi \varepsilon \tau \alpha \iota$ strings $\sigma \alpha \nu \delta о \mu \kappa \kappa \dot{\varepsilon} \varsigma \mu \circ v \dot{\alpha} \delta \varepsilon \varsigma$. K $\dot{\alpha} \theta \varepsilon$ string - array $\pi \rho \varepsilon \dot{\pi} \pi \varepsilon \iota$ v $\alpha \lambda \dot{\eta} \gamma \varepsilon \iota \quad \sigma \varepsilon \mu \eta \delta \dot{\varepsilon} v$ (null $\chi \alpha \rho \alpha \kappa \tau \eta \dot{-}$

 $v \alpha$:

$|\mathrm{M}| \mathrm{y}||\mathrm{m}| \mathrm{e}| \mathrm{s}|\mathrm{s}| \mathrm{a}|\mathrm{g}| \mathrm{e}||\mathrm{NULL}|$

Av $\alpha \cup \tau$ т́ тo array $\chi \alpha \rho \alpha \kappa \tau ท \dot{\rho} \omega \nu$ оvo $\mu \alpha-$ $\sigma \tau \varepsilon i$ str, τ о் $\tau \varepsilon$ oı $\mu \varepsilon \mu \circ v \omega \mu \varepsilon \dot{v o t ~} \chi \alpha \rho \alpha \kappa \tau \eta \dot{\rho} \rho \varsigma$ tov $\mu \pi$ оооóv $v \alpha \kappa \lambda \eta \theta$ oúv $\sigma \alpha v \operatorname{str}[0]$, $\operatorname{str}[1] \kappa$ к.о.к., $\mu \varepsilon$ то $\chi \alpha \rho \alpha \kappa \tau \eta \dot{\rho} \alpha \tau \dot{\varepsilon} \lambda$ оиऽ $\sigma \tau \eta$ $\theta \dot{\varepsilon} \sigma \eta$ str [10]. H standard $\beta \iota \beta \lambda 1 o \theta \dot{\eta} \kappa \eta$,
 $\chi \varepsilon \iota \rho \iota \sigma \mu$ oủ strings.
$\Sigma \tau \eta \nu \pi \varepsilon \rho i \pi \tau \omega \sigma \eta \pi \frac{\pi}{} \quad \theta \varepsilon \lambda \eta \dot{\sigma} \sigma \nu \mu \varepsilon \quad v \alpha$

 $\kappa \alpha \tau \dot{\alpha} \tau \eta \delta \dot{\eta} \lambda \omega \sigma \eta$:
int array $[10]=\{1,2,3,4,5,6,7,8,9,10\}$;
$\mathrm{E} \varphi$ 'ö $\sigma o v \tau \alpha$ strings $\chi \alpha \rho \alpha \kappa \tau \eta \dot{\eta} \rho \omega$ हivaı то̇бo $\delta 1 \alpha \delta \varepsilon \delta о \mu \varepsilon \dot{v} \alpha, \quad \eta$ C $\pi \alpha \rho \dot{\varepsilon} \chi \varepsilon \iota \quad \mu i \alpha$
 $\tau \iota \mu \dot{\omega} v \sigma \varepsilon$ string array, $\alpha \pi \dot{\text { o }}$ тo $v \alpha \delta \dot{\omega} \sigma o \nu \mu \varepsilon$ $\dot{\varepsilon} v \alpha v-\dot{\varepsilon} v \alpha \nu$ тоиऽ $\chi \alpha \rho \alpha \kappa \tau \eta \dot{\rho} \varepsilon \varsigma \kappa \alpha \iota$ то NULL: char $\operatorname{str}[10]=\{$ abcdefghi' $\}$
To array $\pi \rho \dot{\pi} \pi \varepsilon \iota ~ v \alpha \dot{\varepsilon} \chi \varepsilon \iota$ то̇бєऽ $\theta \dot{\varepsilon} \sigma \varepsilon ı \varsigma$, $\dot{\omega} \sigma \tau \varepsilon$ v $\alpha \chi \omega \rho \alpha \dot{\varepsilon \iota} \kappa \alpha \iota$ тоv $\chi \alpha \rho \alpha \kappa \tau \eta \dot{\rho} \rho$ null.
 compiler v $\alpha \alpha \sigma \chi \circ \lambda \eta \theta \varepsilon i \mu \varepsilon$ то $\mu \dot{\varepsilon} \gamma \varepsilon \theta$ oऽ τ то array к $\alpha \iota \tau \eta \nu \kappa \alpha \tau \alpha \mu \varepsilon ̇ \tau \rho \eta \sigma \eta \tau \omega \nu \tau \iota \mu \dot{\nu}, \mu \eta$ $\gamma \rho \dot{\alpha} \varphi \circ v \tau \alpha \varsigma \tau і \pi о \tau \varepsilon \alpha v \dot{\alpha} \mu \varepsilon \sigma \alpha \alpha \tau \iota \varsigma \alpha \gamma \kappa \dot{\lambda} \lambda \varepsilon \varsigma$, $\sigma \tau \alpha$ ठv̇o $\pi \rho о \eta \gamma \circ u \dot{\mu} \mu v \alpha \quad \pi \alpha \rho \alpha \delta \varepsilon i \gamma \mu \alpha \tau \alpha$.
 «к $\varepsilon v o u ̈ » ~ a r r a y . ~ \Sigma \varepsilon \mu i \alpha ~ \delta \dot{\eta} \lambda \omega \sigma \eta \quad \chi \omega \rho i \varsigma$
 óvo $\mu \alpha \alpha v \alpha \varphi \dot{\varepsilon} \rho \varepsilon \tau \alpha \iota ~ \sigma \varepsilon$ array. $\Delta \varepsilon v \kappa \alpha \tau \alpha v \alpha-$ $\lambda \dot{\omega} v \varepsilon \iota \varepsilon \pi \iota \pi \lambda \dot{\varepsilon} \circ \vee \chi \dot{\omega} \rho \circ \sigma \tau \eta \mu v \eta \dot{\mu} \mu \nless \alpha \iota \delta \varepsilon$ $\sigma \nu \mu \beta о \lambda i \zeta \varepsilon \iota$ array $\mu \varepsilon \tau \alpha \beta \lambda \eta \tau$ ои $\mu \varepsilon \gamma \dot{\varepsilon} \theta$ ous. Н $\beta \alpha \sigma \iota к \eta ่ ~ \chi \rho \eta ் \sigma \eta ~ \tau о v, ~ \sigma u v i \sigma \tau \alpha \tau \alpha \iota ~ \sigma \tau о ~$ $\pi \dot{\varepsilon} \rho \alpha \sigma \mu \alpha$ к $\dot{\pi}$ о七о орі $\sigma \mu \alpha \tau о \varsigma ~ \sigma \varepsilon ~ \mu i \alpha$ $\sigma \cup v \alpha \dot{\alpha} \tau \eta \sigma \eta(\Sigma \chi .2)$.
$\mathrm{M} \varepsilon \tau \alpha \pi \mathrm{o} \lambda \nu \delta \mathrm{o} \dot{\alpha} \sigma \tau \alpha \tau \alpha$ arrays $\mu \pi \mathrm{o}$ рои̇ $\mu \varepsilon$
 бi α тоט vлодо $\gamma \iota \sigma \mu$ ои тоט $\mu \varepsilon \gamma \varepsilon \dot{\varepsilon} \theta$ ous тоиц. ($\mathrm{Av} v \nu \mu \dot{\alpha} \sigma \tau \varepsilon, \delta \varepsilon v \varepsilon \varepsilon_{i v \alpha \iota} \pi \alpha \rho \dot{\alpha}$ arrays $\dot{\alpha} \lambda \lambda \omega v$ arrays $\kappa \lambda \pi$.). $\Sigma \tau \eta \sigma u v \dot{\varepsilon} \chi \varepsilon \iota \alpha$, ot $\alpha \rho \chi ⿺ \kappa \dot{\varepsilon} \varsigma$ $\tau \iota \varepsilon \dot{\varepsilon}$ о $\mu \alpha \delta$ отоьойv $\tau \iota \iota ~ \kappa \alpha \tau \dot{\alpha} \lambda \lambda \eta \lambda \alpha$:
int multi []$[3]=\{\{1,2,3\},\{4,5,6\},\{7,8,9\}\}$

POINTERS

 $\kappa \dot{\alpha} \pi о \iota \circ \varsigma \mu \varepsilon \tau \eta \quad \chi \rho \dot{\jmath} \sigma \eta \tau \omega \nu$ pointers, $\theta \alpha$
 $\varphi \tau \dot{\alpha} \sigma \varepsilon \iota \sigma \varepsilon \delta \nu \sigma \pi \rho \dot{\sigma} \sigma \iota \tau \pi \rho \circ \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma \tau \iota \kappa \dot{\alpha}$

```
main()
    {
    int *ptr:
    convert(ptr);
    }
convert(p)
int *p;
    p=\sigma\timesFF;
    }
\Sigma%. 5: Eva \pi\rho\dot{\rho}\betainu\alpha \mus: pointers.
```

```
err(errnum)
int errnum;
l
static char *errmess[]=
    {
    "Insufficient memory",
    "Unknown command",
    "File operation error".
    "Printer not on-line"
    };
puts(errmess[errnum]);
\Sigma\chi. 6: Мпріцата \lambda\dot{\alpha}0ovৎ
```

```
struct timeform {
    char dayname[9];
    int hours;
    int mins;
    int secs;
    };
struct timeform x={"monday",12,42,30};
struct timeform }\textrm{y}={\mathrm{ "tuesday",12,34,30};
main()
    if(cmptime(&x,&y)==0) puts("same time");
    else puts("different time");
    }
cmptime (a,b)
struct timeform *a,*b; /*a and b are pointers to structure*/
    {
    if (a->hours==b->hours
        && a->mins==b->mins
        && a-> secs==b-> secs)
        return 0;
    else return 1;
    }
```


ن́ $\psi \eta . \Delta \varepsilon v$ v $\pi \dot{\alpha} \rho \chi \varepsilon ı$ тілотє $\pi \varepsilon \rho і \pi \lambda$ око $\sigma \tau \eta v$ $\kappa \alpha \tau \alpha v o ̇ \eta \sigma \dot{\eta}$ тоט̧, $\varepsilon v \dot{\omega}, \alpha \pi \dot{\circ} \tau \eta v \dot{\alpha} \lambda \lambda \eta$,
 о $\delta \eta \gamma \dot{\eta} \sigma \varepsilon \iota ~ \sigma \tau \eta \nu \alpha \pi \dot{o} \lambda \nu \tau \eta \pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma \tau 1-$ $\kappa \eta \dot{\eta} \varepsilon \lambda \varepsilon \cup \theta \varepsilon \rho i \alpha, \dot{\eta} \theta \alpha \sigma \alpha \varsigma \sigma \varphi \imath \chi \tau о \delta \dot{\varepsilon} \sigma \varepsilon \iota ~ \kappa \alpha \iota$ $\theta \alpha$ б $\alpha \varsigma \kappa \alpha \theta \eta \lambda \dot{\omega} \sigma \varepsilon$.

O pointer, ε ival $\dot{\mu} \dot{i} \alpha \mu \tau \alpha \beta \lambda \eta \tau \eta \dot{\eta} \pi 0 v$ $\kappa \rho \alpha \tau \dot{\alpha} \tau \eta \delta^{\prime} \varepsilon \dot{\theta} \theta u v \sigma \eta \mu v \eta \dot{\mu} \eta \varsigma$ हvȯ̧ $\delta \varepsilon \delta o-$ $\mu \varepsilon ̇ v o v . ~ М \pi о \rho о и ̇ \mu \varepsilon ~ v \alpha ~ \delta о и ̇ \mu \varepsilon ~ \tau \eta ~ \delta เ \varepsilon u ் \theta u v \sigma \eta$,

 $\sigma \eta \mu v \eta \dot{\mu} \eta \varsigma 0 \times 1200$. Tótє o pointer $\alpha \cup \tau \eta \dot{\varsigma}$ $\tau \eta \varsigma \mu \varepsilon \tau \alpha \beta \lambda \eta \tau \eta \dot{\varsigma} \theta \alpha \dot{\varepsilon} \chi \varepsilon \iota \tau \eta \nu \tau \iota \mu \dot{\eta} 0 \times 1200$. Avtò $\varepsilon i v a \iota ~ o ̀ \lambda o ~ к ı ~ o ̀ \lambda o . ~ ' O \pi \omega \varsigma ~ \beta \lambda \varepsilon ̇ \pi \varepsilon \tau \varepsilon, ~$
 pointers. 'O $\lambda \varepsilon \varsigma$ ot $\gamma \lambda \dot{\omega} \sigma \sigma \varepsilon \varsigma$ тou¢ $\chi \rho \eta \sigma$ -

 тоиऽ $\alpha \pi$ ó то $\chi \rho \dot{\jmath} \sigma \tau \eta$.

 $\dot{\varepsilon} \chi \circ \cup \mu \varepsilon \dot{\varepsilon} v \alpha \nu$ pointer $v \alpha$ ठ $\varepsilon i \chi v \varepsilon ı ~ \alpha \cup \tau \eta ่ ~ \tau \eta ~$ $\delta \iota \varepsilon \cup \dot{\theta}$ uvo η ($\delta \eta \lambda \alpha \delta \dot{\eta}$ pointer $\gamma \iota \alpha$ тоv pointer), ó $\pi \omega \varsigma \kappa \alpha \iota \dot{\varepsilon} v \alpha$ array $\alpha \pi$ ó pointers $\dot{\eta} \dot{\circ}$ ó, $\tau \iota \dot{\alpha} \lambda \lambda$ o $\theta \varepsilon \lambda \dot{\eta} \sigma o \cup \mu \varepsilon$. Eivaı $\beta \alpha \sigma \iota \kappa o ́ v \alpha$ $\kappa \alpha \tau \alpha v o \eta \dot{\sigma} \sigma \cup \mu \varepsilon$ óтı o pointer $\delta \varepsilon v \varepsilon \xi \alpha \sigma \varphi \alpha-$ $\lambda i \zeta \varepsilon \iota ~ \tau о ~ \chi \dot{\omega} \rho о$ тоט $\theta \alpha$ к к $\alpha \tau \eta$ Өoùv $\tau \alpha$ $\delta \varepsilon \delta о \mu \varepsilon \dot{\varepsilon} v \alpha-\alpha \pi \lambda \dot{\omega} \varsigma ~ \delta \varepsilon i \chi v \varepsilon ı \sigma^{\prime} \alpha v \tau o ̉ v . ~ O$

 $\chi \dot{\omega} \rho \circ \varsigma ~ \alpha \pi о \theta \dot{\eta} \kappa \varepsilon \cup \sigma \eta \varsigma$. Ot $\pi \varepsilon \rho \iota \sigma \sigma о ் \tau \varepsilon \rho \circ \iota$ $\pi \rho о \gamma \rho \alpha \mu \mu \tau \tau \sigma \tau \varepsilon \varsigma$ тทऽ C , $\chi \rho \eta \sigma \iota \mu$ тоเойv pointers $\varepsilon \pi \varepsilon \iota \delta \dot{\eta}, \sigma \cup \chi v \dot{\alpha}, \varepsilon i v \alpha ı \pi \iota \circ \chi \rho \eta \dot{\sigma} \iota \mu \eta$ $\eta \dot{\varepsilon} \mu \mu \varepsilon \sigma \eta \pi \rho \circ \sigma \pi \dot{\varepsilon} \lambda \alpha \sigma \eta \tau \omega v \delta \varepsilon \delta \circ \mu \varepsilon \dot{\varepsilon} \omega \nu$.
Evac pointer $\delta \eta \lambda \omega \dot{\omega \varepsilon \tau \alpha \iota} \mu \varepsilon \tau \eta \nu \alpha v \alpha \varphi o-$
 $\kappa \alpha \iota \mu \varepsilon \tau о \nu \tau \varepsilon \lambda \varepsilon \sigma \tau \dot{\eta}$ *. ' E $\tau \sigma \iota \gamma \rho \dot{\propto} \varphi \circ \cup \mu \varepsilon$: char * s;
/*s is a pointer to a char* /
int * p;
/ *p is a pointer to an int* /
 $\mu \varepsilon \kappa \dot{\alpha} \pi o \iota v$ pointer, $\pi \rho \dot{\varepsilon} \pi \varepsilon \iota \quad v \alpha$ тov
 $\sigma \eta \mu \varepsilon i o . ~ A v \tau o ̇ ~ \gamma i v \varepsilon \tau \alpha \iota ~ \mu \varepsilon ~ \varepsilon v \tau о \lambda \eta ் ~ \tau \eta \varsigma$ $\mu о \rho \varphi$ ท்ऽ:
$\mathrm{s}=$ \&str [2];
/*s points to the third element of str* / $\mathrm{p}=$ \& varl?
$\mathrm{p}=0 \times 1200$;
/ *p points at place in memory* /
O $\tau \varepsilon \lambda \varepsilon \sigma \tau \eta \dot{\zeta}$ \&, $\sigma \eta \mu \alpha i v \varepsilon \iota$ " $\chi \rho \eta \sigma \iota \mu$ o$\pi о i \eta \sigma \varepsilon \tau \eta \delta เ \varepsilon v ் \theta u v \sigma \eta$ тou". Eivaı $\varepsilon \pi ı \tau \rho \varepsilon$ $\pi \tau \dot{O} v \alpha \beta \dot{\alpha} \lambda o u \mu \varepsilon$ pointers $v \alpha$ $\delta \varepsilon i \chi$ vouv
 $\chi \rho \eta \sigma \iota \mu \varepsilon \dot{\varepsilon} \varepsilon \iota \mu$ о̉vo $\sigma \tau 0 v \dot{\varepsilon} \lambda \varepsilon \gamma \chi \circ$ бטүкєкрı-
 $\varepsilon \iota \sigma o \dot{\delta o u} / \varepsilon \xi \dot{\delta} \delta o u$. $\Sigma u v \eta \dot{\eta} \theta \omega \varsigma$ ot pointers $\delta \varepsilon i \chi$ vouv $\mu \varepsilon \tau \alpha \beta \lambda \eta \tau \dot{\varepsilon} \varsigma(\Sigma \chi .3)$.

O тט̇ло弓 $\tau \omega v \delta \varepsilon \delta \circ \mu \varepsilon \dot{v} \omega v, \delta \eta \lambda \dot{\omega} v \varepsilon \tau \alpha \iota \gamma \iota \alpha$ $v \alpha \kappa \alpha \theta$ oठ $\eta \gamma \eta \dot{\sigma} \varepsilon \iota$ тov compiler $\sigma \tau \circ$ тı ти̇ло
 $\zeta \varepsilon \iota ~ \tau \iota \varsigma ~ \delta i \varepsilon v \theta u ̈ v \sigma \varepsilon ı \varsigma ~ \pi о ט ~ \theta \alpha ~ \chi \rho \varepsilon เ \alpha \sigma \tau о u ̈ v ~$ $\sigma \tau \eta \vee \varepsilon \kappa \tau \dot{\varepsilon} \lambda \varepsilon \sigma \square \eta$ हVó $\pi \rho \circ \gamma \rho \dot{\alpha} \mu \mu \alpha \tau \circ \varsigma . \Sigma \tau о$
 $\delta \varepsilon \dot{\chi} \chi \vee \varepsilon \iota ~ \tau о v ~ \varepsilon \pi \dot{\mu} \mu \varepsilon v o$ int. Паро́ μ о七 α, то $\mathrm{p}+=2 \theta \alpha \mu \varepsilon \tau \alpha \kappa ı \nu \eta ் \sigma \varepsilon \iota ~ \tau о v \mathrm{p} \kappa \alpha \tau \alpha \dot{\alpha} \delta \dot{\circ}$ int.
 $\theta \varepsilon i \quad \alpha \kappa о ̇ \mu \alpha$ к $\alpha \iota \quad \gamma เ \alpha$ v α к $\alpha \tau \alpha \sigma \kappa \varepsilon \cup \alpha \dot{\alpha} \sigma о \cup \mu \varepsilon$
 $\alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \iota \kappa \dot{\eta} \alpha v \theta \varepsilon \lambda \eta \dot{\sigma} \sigma \cup \mu \varepsilon v \alpha \delta \iota \alpha \tau \rho \dot{\varepsilon}-$ ξ ои $\mu \varepsilon \kappa \dot{\alpha} \pi о ь$ array.

 $\tau \eta \tau \varepsilon \varsigma \quad \theta \alpha$ ทं $\tau \alpha \nu$ ov $\sigma \iota \alpha \sigma \tau \kappa \dot{\alpha} \dot{\alpha} \chi \rho \eta \sigma \tau \varepsilon \varsigma$
 $\delta \varepsilon \iota \kappa \tau о \theta \varepsilon \tau \eta \mu \varepsilon \dot{\varepsilon} \vee \alpha \varepsilon \delta$ о $\mu \dot{\varepsilon} v \alpha$. Avто் то около̇
 бє то $\pi \varepsilon \rho \iota \varepsilon \chi \circ \dot{\mu} \varepsilon v o$ тŋऽ $\theta \dot{\varepsilon} \sigma \eta \varsigma »)$, то́бо $\gamma \iota \alpha$ $\delta \varepsilon \delta o \mu \varepsilon \dot{\varepsilon} \omega \omega v$. $\Gamma \iota \alpha \pi \alpha \rho \dot{\alpha} \delta \varepsilon ı \gamma \mu \alpha$:
int varl, var2 / *declare integrs* / int * ptr; / *declare pointer* / ptr=\& varl; / *point at varl* / *ptr=3; / *set varl to 3* /
var2=*ptr; / *set var2 to varl* /

H $\pi \rho \dot{\omega} \tau \eta \varepsilon v \tau \dot{\pi} \pi \omega \sigma \eta$ ，$\varepsilon i v \alpha \iota$ ȯ $\tau \iota \eta \chi \dot{\eta} \sigma \eta$
 $\varepsilon i \delta \alpha \mu \varepsilon, \tau \eta \sigma \tau \iota \gamma \dot{\eta} \pi$ оט $\sigma \cup \mu \beta о \lambda i \zeta$ оטv к $\alpha \iota$ $\dot{\alpha} \lambda \lambda \varepsilon \varsigma \pi \rho \dot{\alpha} \xi \varepsilon \iota \varsigma, \mu \pi о \rho \varepsilon i$ v α $ŋ \eta \mu$ เоט $\rho \gamma \dot{\eta} \sigma \varepsilon \iota$ $\sigma \cup \gamma \chi \cup \dot{\sigma} \varepsilon เ \varsigma . \quad О \mu \omega \varsigma, \sigma \tau \eta v \pi \rho \dot{\alpha} \xi \eta$ к $\dot{\alpha} \tau$ тغ́тоıo $\delta \varepsilon \sigma \cup \mu \beta \alpha i v \varepsilon ı, \alpha \varphi о ⿺ 廴 \tau \alpha \sigma \cup \mu \varphi \rho \alpha \zeta \dot{\text { ó }}$ $\mu \varepsilon \vee \alpha$ б $\varepsilon i \chi$ vouv к $\dot{\alpha} \theta \varepsilon$ чор $\dot{\alpha}$ к $\alpha \theta \rho \dot{\alpha}$ 七ך $\sigma \eta \mu \alpha \sigma i \alpha$ тous．

Ot pointers，$\varepsilon i v \alpha ı \chi \rho \dot{\sigma} \sigma \iota \rho \iota, \quad \gamma \iota \alpha \tau i$ $\varepsilon \pi \iota \tau \rho \dot{\varepsilon} \pi \circ \cup \nu$ то $\chi \varepsilon \iota \rho \imath \sigma \mu$ ó $\delta \varepsilon \delta о \mu \dot{\varepsilon} v \omega \nu \mu \varepsilon$ тоv $\tau \rho \dot{\pi} \pi \circ \pi \circ \cup \alpha \pi \alpha \iota \tau \circ u ̋ v \kappa \dot{\alpha} \theta \varepsilon \varphi 0 \rho \dot{\alpha}$ oı $\alpha v \dot{\alpha} \gamma \kappa \varepsilon \varsigma$ $\mu \alpha \varsigma$. Eiv α to μ oंvo $\mu \dot{\varepsilon} \sigma o v \pi o v \delta i \alpha \theta \dot{\varepsilon} \tau о \cup \mu \varepsilon$ $\gamma \iota \alpha$ v $\alpha \mu \varepsilon \tau \alpha \beta \dot{\alpha} \lambda \lambda о \cup \mu \varepsilon$ толıк $\dot{\alpha} \delta \varepsilon \delta о \mu \dot{\varepsilon} v \alpha$ $\mu \iota \alpha \varsigma ~ \sigma u v \dot{\alpha} \rho \tau \eta \sigma \eta \varsigma ~ \varepsilon v \dot{\omega}$ ßрıбко́ $\mu \alpha \sigma \tau \varepsilon$ бє $\dot{\alpha} \lambda \lambda \eta$ ，π оט $\dot{\varepsilon} \chi \varepsilon 1 ~ к \lambda \eta \theta \varepsilon i ~ \alpha \pi o \dot{~} \tau \eta \nu \pi \rho \dot{\omega} \tau \eta$ ， $\pi \alpha \rho \alpha \kappa \dot{\alpha} \mu \pi \tau о v \tau \alpha \varsigma ~ \tau о v \quad \pi \varepsilon \rho ı \rho ı \sigma \mu \dot{\text { o }} \tau 0 \cup$
 Eival $\pi \dot{\alpha} v \tau \alpha \alpha \pi \alpha \rho \alpha i \tau \eta \tau 0 \quad \sigma \tau \alpha$ орio $\alpha \alpha \tau \alpha$ $v \alpha$ סivov $\mu \varepsilon \tau \iota \mu \dot{\varepsilon} \varsigma ~ \alpha \lambda \lambda \dot{\alpha} \alpha v$ ，$\alpha v \tau \dot{\varepsilon} \varsigma$ ot $\tau \iota \dot{\varepsilon} \varsigma$ $\varepsilon i v \alpha l$ pointers，$\tau \circ ̇ \tau \varepsilon$ η ovaj $\rho \tau \eta \sigma \eta \xi \dot{\varepsilon} \rho \varepsilon \iota$ $\pi о \cup \theta \alpha \beta \rho \varepsilon \iota \tau \alpha \tau о \pi \iota \kappa \dot{\alpha} \delta \varepsilon \delta о \mu \dot{\varepsilon} v \alpha$ ．Eч $\tau \iota, \eta$ бuv $\dot{\alpha} \rho \tau \sigma \eta$ тоט $\Sigma \chi .4 \mu \pi$ о 4 va $\chi \rho \eta \sigma 1-$ $\mu о \pi о \imath \eta \theta \varepsilon i$ бто $\psi \dot{\alpha} \xi ̧ \imath \mu о$ вvȯ̧ $\chi \alpha \rho \alpha \kappa \tau \eta \dot{\rho} \rho \alpha$

 $\tau \alpha \imath v \alpha \delta o \theta \varepsilon i \quad \eta \delta \iota \varepsilon \cup ̇ \theta u v \sigma \eta$ 兀ou string $\kappa \alpha \iota \theta \alpha$ $\mu \pi о \rho о \cup \dot{\sigma} \alpha \mu \varepsilon v \alpha \kappa \alpha \lambda \dot{\varepsilon} \sigma \circ \cup \mu \varepsilon \tau \eta \sigma \cup v \dot{\alpha} \rho \tau \eta \sigma \eta$ $\mu \varepsilon$ index（\＆str［0］，＇k＇）．Eivaı，ó $\mu \omega \varsigma$ ， $\delta u v \alpha \tau \dot{o} \alpha \pi \lambda \dot{\omega} \varsigma v \alpha \delta \dot{\omega} \sigma o v \mu \varepsilon$ тo óvo $\mu \alpha$ тov array，$\gamma \rho \dot{\alpha} \varphi o v \tau \alpha \varsigma:$ index（str，＇k＇），$\gamma \iota \alpha \tau i$ $\sigma \tau \eta v \mathrm{C} \alpha \cup \tau \dot{\circ} \alpha \cup \tau \dot{\rho} \mu \alpha \tau \mu \varepsilon \tau \alpha \tau \rho \dot{\varepsilon} \pi \varepsilon \tau \alpha \iota \quad \sigma \varepsilon$ pointer．
$\mathrm{K} \dot{\alpha} \theta \varepsilon \varphi о \rho \dot{\alpha} \pi o v$ тo óvo $\mu \alpha$ عvós array $\chi \rho \eta \sigma \iota \mu$ олоเєi $\tau \alpha \iota \sigma \varepsilon \kappa \dot{\alpha} \pi о \iota \alpha \dot{\varepsilon} \kappa \varphi \rho \alpha \sigma \eta, \eta$ C то $\mu \varepsilon \tau \alpha \tau \rho \dot{\varepsilon} \pi \varepsilon \iota$ $\sigma \tau \eta \delta เ \varepsilon \dot{\theta} \theta \cup v \sigma \eta \alpha \varphi \varepsilon \tau \eta \rho i \alpha \varsigma$ $\tau o v$ array，π ov $\dot{\varepsilon} \chi \varepsilon \iota ~ \tau \eta \nu ~ \tau \iota \mu \dot{\eta} ~ \pi o v ~ \theta \alpha ~ \varepsilon i \chi \varepsilon$ $\dot{\varepsilon} v \alpha \varsigma ~ \alpha v \tau i \sigma \tau o \iota \chi \circ \varsigma ~ p o i n t e r . ~ A v \tau o ̇ ~ \sigma \eta \mu \alpha i v \varepsilon ı$ ȯ $\tau \iota \alpha$ arrays $\varepsilon i v \alpha \iota \pi \rho \circ \sigma \pi \varepsilon \lambda \dot{\alpha} \sigma \iota \mu \alpha$ τ ȯ σo $\mu \dot{\varepsilon} \sigma \omega$ pointers，ȯ $\sigma o ~ \kappa \alpha \iota \mu \dot{\varepsilon} \sigma \omega \delta \varepsilon \iota \kappa \tau \dot{\omega} v . \mathrm{O}$
 $\tau \varepsilon \lambda \varepsilon i \omega \varsigma ~ \imath \sigma o \delta u ̇ v \alpha \mu \varepsilon \varsigma:$
$\mathrm{c}=\mathrm{str}$［2］；
$\mathrm{c}=$＊$(\mathrm{str}+2)$ ；

 $\kappa \dot{\alpha} \pi$ otov pointer，$\pi \cdot \chi .:$
int＊ p ；
$\mathrm{p}[21]=12$ ；
Avtウ் $\varepsilon i v \alpha \iota ~ \kappa \alpha \iota ~ \eta \beta \dot{\alpha} \sigma \eta$ ，$\pi \dot{\alpha} v \omega$ $\sigma \tau \eta v$ oлoi α $\varphi \tau \alpha \dot{\alpha} \cup 0 \cup \mu \varepsilon$ arrays $\mu \varepsilon \tau \alpha \beta \lambda \eta \tau \circ \cup \dot{ }$ $\mu \varepsilon \gamma \dot{\varepsilon} \theta$ ous．$\Delta \eta \mu$ tov $\rho \gamma \dot{\omega} v \tau \alpha \varsigma \mu \mathrm{i} \alpha$ $\sigma v v \dot{\alpha} \rho \tau \eta \sigma \eta$
 $\zeta \eta \tau \dot{\alpha} \mu \varepsilon \kappa \alpha i \varepsilon \pi \iota \sigma \tau \rho \dot{\varepsilon} \varphi \varepsilon \iota \tau \eta \delta \iota \varepsilon \cup \dot{\theta} \theta \nu \sigma \sigma \dot{\eta} \tau \eta \zeta$ （ $\delta \eta \lambda . v \alpha \varepsilon \pi \iota \sigma \tau \rho \dot{\varepsilon} \varphi \varepsilon \iota \dot{\varepsilon} v \alpha$ pointer $\pi \rho \circ \varsigma \alpha \cup \tau \dot{\eta}$ $\tau \eta \mu v \eta \dot{\mu}), \mu \pi$ орой $\mu \varepsilon \vee \alpha \tau \eta \chi \rho \eta \sigma \iota \mu \circ \pi \circ เ \dot{\eta}-$ $\sigma o \cup \mu \varepsilon \sigma \alpha v$ array．H standard $\beta \iota \beta \lambda \iota \theta \dot{\eta}-$ $\kappa \eta, \sigma u v \dot{\eta} \theta \omega \varsigma \pi \varepsilon \rho \iota \dot{\varepsilon} \chi \varepsilon \iota \mu \iota \alpha$ т $\dot{\varepsilon} \tau \circ \iota \alpha$ $\sigma u v \dot{\alpha} \rho-$ $\tau \eta \sigma \eta$ ，ó $\pi \omega \varsigma \kappa \alpha \iota \mu i \alpha \pi o v \alpha \pi \varepsilon \lambda \varepsilon v \theta \varepsilon \rho \dot{\omega} v \varepsilon \iota$ $\tau \eta \nu \kappa \rho \alpha \tau \eta \mu \dot{\varepsilon} v \eta \pi \varepsilon \rho \iota \propto \chi \dot{\eta} \mu v \dot{\eta} \mu \eta \varsigma, \mu \varepsilon \tau \dot{\alpha} \tau \eta$ $\chi \rho \eta \dot{\sigma} \eta \tau \eta \varsigma$.
struct neword

$$
\begin{array}{ll}
\text { char *pword; } & \text { /*pointer to word*/ } \\
\text { struct neword *place; } & \text { /*pointer to struct*/ }
\end{array}
$$ \};

$\Sigma \% .8:$ А

Oı $\sigma u v \alpha \rho \tau \eta \dot{\sigma} \varepsilon \iota \varsigma \mu \varepsilon \tau \iota \eta \dot{\eta} \varepsilon \pi \iota \sigma \tau \rho \circ \varphi \eta \dot{\varsigma}$ pointer，$\pi \rho \varepsilon ̇ \pi \varepsilon \iota ~ v \alpha \delta \eta \lambda \omega \theta$ oúv к $\alpha \tau \dot{\alpha}$ то
 char ${ }^{*}$ malloc（ ）；$/{ }^{*}$ returns pointer to char＊／

Avтȯ $\sigma \cup v \eta \dot{\theta} \theta \omega \varsigma ~ \alpha \gamma$ voві $\tau \alpha \iota, \mu \iota \alpha$ к $\alpha \iota$ бтоия
 $\dot{\varepsilon} \chi \varepsilon \iota i \delta 10 \mu \dot{\varepsilon} \gamma \varepsilon \theta$ oऽ $\mu \varepsilon$ тov int $\tau \dot{\pi} \pi 0$ ，π оט $\varepsilon i v \alpha \iota$
 ＇О

 $\chi \rho \eta \sigma \mu$ олоเєі $\varepsilon \kappa \tau \varepsilon \tau \alpha \mu \dot{\varepsilon} v \eta \mu \nu \dot{\eta} \mu \eta$ ．
Oı $\pi \rho \dot{\alpha} \xi \varepsilon \varepsilon \iota \varsigma \tau \omega \nu$ pointers，ó $\pi \omega \varsigma \varepsilon i \delta \alpha \mu \varepsilon$ ，

 $\sigma \tau о \chi \varepsilon \iota \rho \iota \sigma \mu \dot{\delta} \tau \omega \nu$ pointers，$\mu \varepsilon \alpha \pi \rho \circ \sigma \delta \dot{o}-$ $\kappa \eta \tau \alpha \quad \alpha \pi о \tau \varepsilon \lambda \dot{\varepsilon} \sigma \mu \alpha \tau \alpha \kappa \alpha \iota \quad \varepsilon v \delta t \alpha \varphi \dot{\varepsilon} \rho о \cup \sigma \varepsilon \varsigma$ $\varepsilon \mu \pi \varepsilon \iota \rho i \varepsilon \varsigma ~ \sigma \tau \eta$ ф $\dot{\sigma} \eta$ 兀ov debugging． К $\dot{\alpha} \pi о \iota \varepsilon \varsigma ~ \varphi о \rho \dot{\varepsilon} \varsigma$ ，то $\pi \rho \dot{\gamma} \rho \alpha \mu \mu \alpha$ т $\rho \dot{\varepsilon} \chi \varepsilon \iota$ $\kappa \alpha v o v ı \kappa \dot{\alpha}, \varepsilon v \dot{\omega} \dot{\alpha} \lambda \lambda \varepsilon \varsigma ~ \varphi о \rho \dot{\varepsilon} \varsigma ~ \mu \pi \lambda \dot{\varepsilon} \kappa о \nu \tau \alpha \iota$ $\mu \varepsilon \tau \alpha \xi \dot{v}$ тous $\tau \alpha$ $\delta \varepsilon \delta о \mu \dot{\varepsilon} v \alpha \dot{\eta}$ $\sigma \tau \alpha \mu \tau \dot{\alpha} \varepsilon \iota$ $\varepsilon v \tau \varepsilon \lambda \dot{\omega} \varsigma ~ \eta \varepsilon \kappa \tau \varepsilon ̇ \lambda \varepsilon \sigma \eta$ тоט $\pi \rho \circ \gamma \rho \dot{\mu} \mu \mu \tau \circ \varsigma$. Avтó π оט $\sigma \cup \mu \beta \alpha i v \varepsilon ı, ~ \varepsilon i v \alpha ı ~ o ̀ \tau ı ~ \lambda \dot{\alpha} \theta o s$ $\chi \varepsilon \iota \rho ı \sigma \mu \circ i \tau \omega v$ pointers $\kappa \alpha \tau \alpha \lambda \dot{\eta} \gamma o u v \pi$ то λ－

 $\mu \eta \nu \varepsilon v o \chi \lambda \varepsilon i, \alpha \nu$ avt ε ot $\varepsilon \pi \iota \pi \lambda \dot{\varepsilon} \circ \nu$ $\pi \varepsilon \rho เ ๐ \chi \dot{\varepsilon} \varsigma \delta \varepsilon \chi \rho \eta \sigma \iota \mu$ отоьойv $\alpha \alpha$ ．Y $\pi \dot{\alpha} \rho \chi \varepsilon \iota$ ， $\dot{\circ} \mu \omega \varsigma$ ，то $\varepsilon v \delta \varepsilon \chi \dot{\rho} \mu \varepsilon v o \quad v \alpha \kappa \alpha \tau \alpha \sigma \tau \rho \alpha \varphi$ ой
 $\delta \iota \varepsilon \dot{\theta} \theta \cup v \sigma \eta$ $\varepsilon \pi \iota \sigma \tau \rho \circ \varphi \eta \dot{\varsigma} \mu \iota \alpha \varsigma$ $\sigma \cup v \alpha \dot{\alpha} \rho \tau \eta \sigma \eta \varsigma$. ${ }^{-}$E $\tau \sigma \iota, \alpha v \pi о \tau \dot{\varepsilon} \delta \varepsilon i \tau \varepsilon \dot{\varepsilon} v \alpha \pi \rho \dot{\partial} \gamma \rho \alpha \mu \mu \dot{\alpha} \sigma \alpha \varsigma$ $v \alpha$ 甲aivetal ò $\tau \iota \alpha \kappa о \lambda 0 \cup \theta \varepsilon i \quad \delta ı \kappa \grave{~ \tau o u ~}$
 $\tau \varepsilon \dot{\rho} \mu \mathrm{v} \alpha \alpha$ ，к $\alpha \lambda \dot{\alpha} \quad \theta \alpha$ к $\alpha v \varepsilon \tau \varepsilon$ v α $\xi \alpha v \alpha \delta \varepsilon i \tau \varepsilon$ тous pointers π ои $\chi \rho \eta \sigma \iota \mu о \pi о เ \eta ं \sigma \alpha \tau \varepsilon$.

 oŋ convert，हival $\dot{\alpha} \psi o \gamma \eta$ ．To $\lambda \dot{\alpha} \theta o c$
$\beta \rho i \sigma \kappa \varepsilon \tau \alpha \iota \sigma \tau \alpha \delta \varepsilon \delta о \mu \varepsilon ̇ v \alpha \pi 0 \cup \tau \eta \varsigma \pi \varepsilon \rho v \alpha \dot{\varepsilon} \iota$ то $\pi \rho \dot{\gamma} \gamma \rho \alpha \mu \mu \alpha$ ．H $\delta \dot{\eta} \lambda \omega \sigma \eta$ тou ptr

 $\mu \varepsilon \tau \alpha \tau \rho \varepsilon \pi \varepsilon \tau \alpha \iota \quad \sigma \varepsilon$ Oxff．

Ot $\dot{\pi} \pi \varepsilon \rho \circ \iota \pi \rho \circ \gamma \rho \alpha \mu \mu \alpha \tau \sigma \tau \varepsilon \dot{\varsigma}, \sigma \cup \chi v \dot{\alpha}$ $\pi \rho \circ \sigma \pi \alpha \theta \circ \dot{v} v$ v α סou ε عu̇ouv $\chi \omega \rho i \varsigma$ pointers，
 Avti $\theta \varepsilon \tau \alpha$ ，oו $\pi \varepsilon \pi \varepsilon \iota \rho \alpha \mu \varepsilon ̇ v o ı ~ \kappa \alpha ̇ v o u v ~ \varepsilon \kappa \tau \varepsilon-~$ $\tau \alpha \mu \varepsilon \dot{\varepsilon} \eta \eta$ Х $\rho \dot{\eta} \sigma \eta, \pi \rho \dot{\alpha} \gamma \mu \alpha$ π оט $\sigma \eta \mu \alpha i v \varepsilon ı$ ó τ
 $\varphi \iota \lambda \iota \kappa \dot{\alpha}$ ．

Evpei $\alpha \rho \eta \dot{\sigma} \eta \tau \omega \vee$ pointers，$\gamma i v \varepsilon \tau \alpha \iota \sigma \tau$

 $\mu \pi о \rho \circ \dot{\sigma} \sigma \alpha \mu \varepsilon \vee \alpha \dot{\varepsilon} \chi \circ \cup \mu \varepsilon \gamma<\alpha \tau \eta v \varepsilon \mu \varphi \dot{\alpha} v i \sigma \eta$ $\mu \eta v \nu \mu \dot{\alpha} \tau \omega \nu \lambda \dot{\alpha} \theta o v \varsigma \quad \sigma \varepsilon \dot{\varepsilon} v \alpha$ $\pi \rho o \dot{\gamma} \rho \alpha \mu \mu \alpha$ ． X $\rho \eta \sigma \iota \mu$ оо七єi to errmess，$\dot{\varepsilon} v \alpha$ array $\alpha \pi \dot{o}$ pointers π ои $\delta \varepsilon i \chi v o u \vee \chi \alpha \rho \alpha \kappa \tau ท ŋ \rho \varepsilon \varsigma . ~ A v \tau o i ~ i$ Oı pointers，$\varepsilon i v \alpha \iota \dot{\varepsilon} \tau \sigma \iota \varphi \tau \iota \alpha \gamma \mu \dot{\varepsilon} v o \iota, \dot{\omega} \sigma \tau \varepsilon \vee \alpha$ $\delta \varepsilon i \chi$ vouv $\sigma \tau о$ к $\alpha \tau \dot{\alpha} \lambda \lambda \eta \lambda$ о $\mu \eta \dot{\imath} v \mu \alpha$ ，к $\dot{\alpha} \theta \varepsilon$ чор $\dot{\alpha}$ ．To array $\alpha \cup \tau o \dot{,} \pi \rho \varepsilon \dot{\pi} \varepsilon \iota \vee \alpha \delta \eta \lambda \omega \theta \varepsilon i$ static（ η va $\gamma \mathbf{i v \varepsilon ı}$ global），α ழoú μ óvo тȯт ε $\varepsilon \pi \iota \tau \rho \varepsilon ̇ \pi \varepsilon \iota . \eta \mathrm{C} \alpha \cup \tau \dot{\eta} \tau \eta \mu \dot{\varepsilon} \theta \mathrm{o} \delta \mathrm{o} \alpha \pi$ ȯठooŋ々 $\alpha \rho \chi \iota \kappa \dot{\omega} v \tau \iota \mu \dot{\omega} v . \mathrm{H} \sigma u v \dot{\alpha} \rho \tau \eta \sigma \eta, \kappa \alpha \lambda \varepsilon i \tau \alpha \iota$ $v \alpha \delta \dot{\omega} \sigma \varepsilon \iota$ то $\kappa \alpha \tau \dot{\alpha} \lambda \lambda \eta \lambda o \quad \mu \eta \dot{\eta} v \mu \alpha, \gamma \iota \alpha$ $\pi \alpha \rho \alpha \dot{\alpha} \varepsilon \iota \gamma \mu \alpha \operatorname{err}(2) ; \sigma \tau \eta \nu \pi \varepsilon \rho i \pi \tau \omega \sigma \eta \lambda \dot{\alpha}-$ Өous $\sigma \tau \eta \nu \pi \rho о \sigma \pi \dot{\varepsilon} \lambda \alpha \sigma \eta \quad \alpha \rho \chi \varepsilon i o u$ ．
$\Sigma \tau \eta \nu \mathrm{C}$ ，$v \pi \dot{\alpha} \rho \chi \varepsilon \iota \quad \mu \iota \alpha \quad \chi \rho \eta \sigma \iota \mu \dot{\tau} \tau \alpha \tau \eta$ $\mu \dot{\varepsilon} \theta o \delta o \varsigma \gamma 1 \alpha$ то $\pi \dot{\varepsilon} \rho \alpha \sigma \mu \alpha \pi \alpha \rho \alpha \mu \dot{\varepsilon} \tau \rho \omega \nu \sigma \varepsilon$ $\dot{\varepsilon} v \alpha \pi \rho o \dot{\gamma} \rho \alpha \mu \mu \alpha, \delta \eta \lambda \alpha \delta \dot{\eta} \pi \rho \alpha \kappa \tau \iota \kappa \dot{\alpha} \sigma \tau \eta$ $\sigma \cup v \dot{\alpha} \rho \tau \eta \sigma \eta$ main．Ot $\pi \alpha \rho \alpha \dot{\mu} \varepsilon \tau \rho o t$ Sivov $\tau \downarrow$ $\tau \eta \nu \dot{\omega} \rho \alpha \pi$ поט к $\alpha \lambda о \dot{\mu} \mu \varepsilon$ то $\pi \rho \dot{\gamma} \gamma \rho \alpha \mu \mu \alpha$ ．Гı α $\pi \alpha \rho \dot{\alpha} \delta \varepsilon \iota \gamma \mu \alpha, \mu \varepsilon$
myprog bill jim 123
$\kappa \alpha \lambda$ оü $\mu \varepsilon$ то $\pi \rho о \dot{\gamma} \rho \alpha \mu \mu \alpha$ myprog $\mu \varepsilon \tau \alpha$ ＂bill＂，＂jim＂，＂ $123 " \sigma \alpha v$ strings $\delta 1 \alpha \theta \dot{\varepsilon} \sigma \iota-$ $\mu \alpha \sigma \tau \eta$ main．T α opi $\sigma \mu \alpha \tau \alpha, \delta \eta \lambda \dot{\omega} v o v \tau \alpha \iota$ $\sigma \cup \mu \beta \alpha \tau \iota \kappa \dot{\alpha} \omega \varsigma ~ \varepsilon \xi \zeta \dot{\eta} \zeta:$
main（argc，argv）
int argc；
char＊argv［ ］；／＊array of pointers＊／ \｛
 o $\rho \iota \sigma \mu \alpha \dot{\tau} \omega \nu \sigma \cup v \mathcal{\varepsilon} v \alpha \kappa \alpha \iota \tau \alpha$ string opi $\sigma \mu \alpha \tau \alpha$ عivaı $\delta 1 \alpha \theta \dot{\varepsilon} \sigma \iota \mu \alpha$ $\sigma \alpha v$ argv［1］，argv［2］ к．о．к．То $\dot{\varepsilon} v \alpha \pi \alpha \rho \alpha \pi \dot{\alpha} v \omega \sigma \tau о \pi \lambda \dot{\eta} \theta$ оц $\tau \omega v$ о $\rho \iota \sigma \mu \dot{\alpha} \tau \omega v$ ，v $\pi \dot{\alpha} \rho \chi \varepsilon \iota \varepsilon \pi \varepsilon \iota \delta \dot{\eta}$ тo Unix $\delta i v \varepsilon \iota$
 $\mathrm{A} v \kappa \alpha \imath \quad \sigma \tau \alpha \quad \pi \varepsilon \rho \iota \sigma \sigma o \dot{\tau} \varepsilon \rho \alpha \alpha \pi \dot{\alpha} \tau \alpha \dot{\alpha} \lambda \lambda \alpha$
 $\dot{\varepsilon} \chi \varepsilon \iota \delta \iota \alpha \tau \eta \rho \eta \theta \varepsilon i \quad \eta$ бú川 $\beta \alpha \sigma \eta$ ．

Av $\dot{\varepsilon} \chi \varepsilon \tau \varepsilon \alpha \kappa \dot{\mu} \mu \alpha$ $\alpha \mu \varphi$ ßодiєऽ ótı ot pointers $\alpha \pi \lambda$ ovo $\tau \varepsilon \dot{o} 0 u v \quad \tau \alpha \quad \pi \rho \dot{\alpha} \gamma \mu \alpha \tau \alpha$ ，
 $\tau \eta \delta \eta \mu$ וou $\gamma \gamma i \alpha$ عvós full－screen editor．O $\tau \rho \dot{\pi о} \circ \varsigma \pi \circ \cup \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \dot{\alpha} \zeta \varepsilon \tau \alpha \iota ~ \tau о ~ к \varepsilon і \mu \varepsilon v o ~ \sigma \tau \eta$
 $\kappa \alpha \iota \tau \eta v \tau \alpha \chi \dot{\tau} \tau \eta \tau \alpha$ тоט $\pi \rho \circ \gamma \rho \alpha \dot{\alpha} \mu \mu \alpha \tau \circ \varsigma . \Delta \varepsilon v$
 strings，$\dot{\varepsilon} \sigma \tau \omega \kappa \alpha \iota \dot{\varepsilon} v \alpha \gamma \iota \alpha \tau \eta \nu \kappa \dot{\alpha} \theta \varepsilon \gamma \rho \alpha \mu \mu \dot{\eta}$ ，

 blocks．Пto $\alpha \pi \lambda \dot{\lambda}$ вivat v $\alpha \alpha \varphi t \varepsilon \rho \dot{\omega} \sigma о \cup \mu \varepsilon$ $\dot{\varepsilon} v \alpha \mu \varepsilon \gamma \dot{\alpha} \lambda о$ о $\tau \mu \dot{\eta} \mu \alpha \mu \nu \eta \dot{\mu} \mu \varsigma \gamma 1 \alpha$ то к $\varepsilon i \mu \varepsilon v o$ $\kappa \alpha \iota v \alpha \quad \chi \rho \eta \sigma \iota \mu \circ \pi о \iota о \cup ँ \mu \varepsilon$ pointers π оv $\theta \alpha$ $\mu \alpha \rho \kappa \dot{\alpha} \rho \circ \nu \nu \tau \eta \nu \alpha \rho \chi \eta \dot{\eta}$ ，то $\tau \dot{\varepsilon} \lambda \frac{}{}$ ，,$\tau \eta \theta \dot{\varepsilon} \sigma \eta$
 $\varepsilon к \tau \cup \pi о и ̆ \mu \varepsilon v o ~ \chi \alpha \rho \alpha \kappa \tau ท ั \rho \alpha$ ．Avто́ то $\tau \mu \eta \dot{\mu} \alpha$

 $\gamma \alpha \sigma i \alpha \mu \varepsilon \mu i \alpha$ $\sigma v v \alpha \dot{\rho} \tau \eta \sigma \eta \pi$ поט $\mu \varepsilon \tau \alpha \kappa ı v \varepsilon i$ blocks $\chi \alpha \rho \alpha \kappa \tau ท j \rho \omega v, \varepsilon і \mu \alpha \sigma \tau \varepsilon$ бто $\sigma \omega \sigma \tau \circ$ $\delta \rho \dot{\mu} \mu$ ．
Ot standard $\sigma u v \alpha \rho \tau \eta ் \sigma \varepsilon เ \varsigma ~ \varepsilon \kappa \tau u \dot{\pi} \omega \sigma \eta \varsigma$ strings，$\delta \varepsilon v \mu \pi$ оройv va $\chi \rho \eta \sigma \iota \mu$ олоเ $\eta-$ Өoúv，$\alpha \lambda \lambda \dot{\alpha}$ $\delta \varepsilon v$ हivat ठüбкодо $v \alpha$

 $\sigma \eta \tau \omega v \mu \varepsilon \tau \alpha \kappa \iota v \eta \dot{\sigma} \varepsilon \omega v, \varepsilon i v \alpha \iota v \alpha \kappa \rho \alpha \tau \dot{\alpha} \mu \varepsilon$
 $\tau \eta \varsigma \mu v \eta \dot{\mu} \eta \varsigma$ ，то $\mu \varepsilon \tau \dot{\alpha}$ тоv к $\dot{\varepsilon} \rho \sigma о \rho \alpha$ бто $\dot{\alpha} \lambda \lambda \mathrm{o} \kappa \alpha \iota \quad \varepsilon v \delta t \alpha \dot{\alpha} \mu \varepsilon \sigma \alpha$ v $\alpha \dot{\varepsilon} \chi о \cup \mu \varepsilon$ тоv є $\lambda \varepsilon \dot{\cup} \theta \varepsilon \rho \circ \quad \chi \dot{\omega} \rho \circ$ ．＇Eтбı，$\eta \delta \iota \alpha \gamma \rho \alpha \varphi \eta{ }_{\eta}, \gamma \iota \alpha$ $\pi \alpha \rho \alpha \dot{\delta} \delta \iota \gamma \mu \alpha$ ，$\gamma i v \varepsilon \tau \alpha \iota \quad \alpha \pi \lambda \dot{\alpha} \mu \varepsilon$ тo $v \alpha$ $\mu \varepsilon \tau \alpha \kappa ı \nu \eta \dot{\gamma} \sigma \cup \mu \varepsilon \dot{\varepsilon} v \alpha$＂б $\sigma \mu \varepsilon เ \omega \tau \dot{\eta}$＂$\mu \varepsilon \tau \dot{\alpha} \tau$ $\kappa \dot{\varepsilon} \rho \sigma \circ \rho \alpha, \delta \eta \lambda \alpha \delta \dot{\eta} \dot{\varepsilon} v \alpha$ pointer．

\triangle OME

 $\kappa \dot{\omega} \nu \tau \dot{\tau} \pi \omega \nu \delta \varepsilon \delta o \mu \varepsilon ் v \omega \nu$（int，long，array $\kappa \tau \lambda$ ．）$\alpha v \dot{\alpha} \lambda \mathrm{o} \gamma \alpha \mu \varepsilon \tau \iota \varsigma$ єк $\alpha \boldsymbol{\sigma} \sigma \tau \varepsilon \alpha \pi \alpha \iota \tau \dot{\eta}-$ $\sigma \varepsilon ı \varsigma . ~ \Gamma i \alpha ~ \pi \alpha \rho \alpha \dot{\alpha} \delta \varepsilon \iota \gamma \mu \alpha, \tau \mu \eta \mu \alpha \tau \alpha \pi \lambda \eta \rho о \varphi о-$
 $\alpha \rho ı \theta \mu$ ós $\tau \eta \lambda \varepsilon \varphi \dot{\omega} v o v, \eta \lambda \iota \kappa i \alpha \ldots) \kappa \alpha \lambda \dot{\tau} \tau \varepsilon \rho \alpha$ $\theta \alpha \dot{\eta} \tau \alpha v v \alpha \theta \varepsilon \omega \rho \circ u ̇ v \tau \alpha \iota \quad \sigma \alpha v \mu i \alpha \varepsilon v o ̇ \tau \eta \tau \alpha$ ．

 $\delta \eta \lambda \dot{\omega} v \varepsilon \iota$ то óvo䒑 α то⿱ $\pi i v \alpha \kappa \alpha, \dot{\text { ó }} \pi \omega \varsigma \kappa \alpha \iota \tau \alpha$
 $\pi о \cup \pi \varepsilon \rho t \varepsilon ̇ \chi \varepsilon ı$ ．＇Етбı：
struct timeform
char dayname［9］；
int hours；
int mins；
int secs；
\｛；
K $\dot{\tau} \tau \iota \tau \dot{\varepsilon} \tau \circ \iota \circ \delta \varepsilon v \varepsilon \xi \alpha \sigma \varphi \alpha \lambda i \zeta \varepsilon \iota$ то $\chi \dot{\omega} \rho \circ$ π оv $\theta \alpha \mu \pi$ ouv $\tau \alpha \delta \varepsilon \delta$ о $\mu \varepsilon \dot{\varepsilon} v \alpha$ ，ó $\mu \omega \varsigma$ тo óvo $\mu \alpha$

 roın日oủv．H
struct timefrom x, y ；
$\theta \alpha \delta \eta \lambda \dot{\omega} v \varepsilon \iota \pi \iota \alpha \delta \dot{o} \circ \delta o \mu \varepsilon ́ \varsigma, \tau \eta v x \kappa \alpha \iota \tau \eta v y$ ，
 T $\alpha \mu \dot{\varepsilon} \lambda \eta \tau \omega \nu \delta о \mu \dot{\omega} \nu \alpha \nu \tau \dot{\omega} \nu \theta \alpha \alpha v \alpha \varphi \dot{\varepsilon} \rho o-$ $v \tau \alpha \iota \sigma \alpha v x$ hours， y secs， d dayname к．о．к．， $\mu \varepsilon \tau \eta \beta o \eta \dot{\theta} \theta \varepsilon \alpha$ тоט $\tau \varepsilon \lambda \varepsilon \sigma \tau \dot{\eta}$＊．Av $\dot{\alpha} \tau \alpha$ $\mu \dot{\varepsilon} \lambda \eta, \mu \pi о \rho о и ̇ v \pi i \alpha$ v $\alpha \rho \eta \sigma \iota \mu о \pi о$ оойv $\tau \alpha$ $\sigma \alpha \nu \kappa \alpha v o v ı \kappa \dot{\varepsilon} \varsigma \mu \varepsilon \tau \alpha \beta \lambda \eta \tau \varepsilon \dot{\zeta} \sigma \varepsilon \kappa \alpha \tau \alpha \chi \omega \rho \eta \dot{\eta}-$ $\sigma \varepsilon ı \varsigma, ~ \varepsilon К \varphi \rho \alpha \dot{\alpha} \varepsilon ı \varsigma ~ \kappa \alpha ı ~ \kappa \lambda \eta j \sigma \varepsilon ı \varsigma ~ \sigma ט v \alpha \rho \tau \eta ்-~$ $\sigma \varepsilon \omega v$ ．E $\tau \sigma \iota, \mu \pi$ о ρ oùv ot $\sigma u v \alpha \rho \tau \eta \dot{\sigma} \varepsilon \iota \varsigma ~ v \alpha$ $\varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \circ \dot{v} \tau \alpha \delta \varepsilon \delta \circ \mu \varepsilon \dot{v} \alpha, \quad \pi . \chi . v \alpha$
 $\chi \rho о v i \kappa \dot{\omega} v \sigma \tau \iota \gamma \mu \omega \dot{v}$ ．${ }^{\text {＇}} \mathrm{H} \delta \eta, \theta \alpha \dot{\varepsilon} \chi \varepsilon \tau \varepsilon$ i $\sigma \omega \varsigma$ $\mu \alpha v \tau \varepsilon ̇ \psi \varepsilon ı ~ \tau ı ~ \sigma \cup \mu \beta \alpha i v \varepsilon \iota: ~ о ~ \pi і v \alpha к \alpha \varsigma ~ к \alpha \tau \alpha-$ $\gamma \rho \dot{\alpha} \varphi \varepsilon \iota$ по̇боऽ $\chi \dot{\omega} \rho \circ \varsigma ~ \chi \rho \varepsilon เ \dot{\alpha} \zeta \varepsilon \tau \alpha$, ，тоเ $\dot{\alpha}$

 $\pi \rho \circ \sigma \pi \dot{\varepsilon} \lambda \alpha \sigma \eta$ ．H $\delta \dot{\eta} \lambda \omega \sigma \eta, \sigma \tau \eta \sigma^{\sigma} v \varepsilon \dot{\varepsilon} \chi \varepsilon 1 \alpha$ ， $\varepsilon \xi \alpha \sigma \varphi \alpha \lambda i \zeta \varepsilon \iota \quad \tau$ о $\chi \dot{\omega} \rho \circ \kappa \alpha \iota$ ，оं $\tau \alpha \nu \pi \iota \alpha$ $\alpha v \alpha \varphi \varepsilon \rho \dot{\rho} \mu \alpha \sigma \tau \varepsilon \sigma \varepsilon \kappa \dot{\alpha} \pi о$ о $\mu \dot{\varepsilon} \lambda$ оऽ，о соmpi－
 $\beta \rho \varepsilon$ ．
$\Gamma i \alpha$ v α к $\alpha v o \cup \mu \varepsilon \mu i \alpha$ одȯк $\lambda \eta \rho \eta$ $\delta о \mu \eta \dot{\eta}$ $\delta t \alpha \theta \dot{\varepsilon} \sigma \iota \mu \eta$ $\sigma \mu i \alpha \kappa \alpha \lambda \circ \dot{\mu} \mu \varepsilon v \eta$ $\sigma \nu v \dot{\alpha} \rho \tau \eta \sigma \eta$ ， $\sigma \tau \varepsilon ่ \lambda v o u \mu \varepsilon \tau \eta \delta \iota \varepsilon \dot{\theta} \theta \nu v \sigma \eta$ $\sigma \alpha v$ ó $\rho \imath \sigma \mu \alpha \mu \varepsilon$ тоv $\tau \varepsilon \lambda \varepsilon \sigma \tau \eta \dot{~ \& ~ . ~ Т о ~} \Sigma \chi$ ．7，$\delta \varepsilon i \chi \nu \varepsilon \iota \pi \dot{\omega} \varsigma_{-}$ ठivou $\alpha \rho \chi \not \kappa \varepsilon \dot{\varepsilon} \tau \iota \mu \varepsilon ் \varsigma ~ \sigma \tau \iota \varsigma ~ \delta о \mu \varepsilon ̇ \varsigma . ~ О ~$

 To a \rightarrow secs ε ival $i \delta i o \mu \varepsilon$ to（ ${ }^{*}$ a）．secs．（ Ot $\pi \alpha \rho \varepsilon v \theta \dot{\varepsilon} \sigma \varepsilon \iota \varsigma \quad \mu \pi \alpha i v o u v \quad \gamma ı \alpha$ $\tau \eta \quad \sigma \omega \sigma \tau \eta \dot{\eta}$ $\pi \rho о \tau \varepsilon \rho \alpha \iota \circ ่ \tau \eta \tau \alpha)$ ．

H $\chi \rho \eta \dot{\sigma} \tau \omega \nu \delta \delta \mu \dot{\omega} v \dot{\varepsilon} \rho \chi \varepsilon \tau \alpha \iota \alpha \beta i \alpha \sigma \tau \alpha$ ò $\tau \alpha v \mu \eta \chi \alpha v \varepsilon v o \dot{\rho} \mu \alpha \sigma \tau \varepsilon \mu \circ v \tau \dot{\varepsilon} \lambda \alpha<\varepsilon \delta \delta \mu \varepsilon \varepsilon v \omega v$ π лоv $\theta \alpha$ т $\alpha \iota \rho ı \dot{\alpha} \zeta$ ouv $\alpha \kappa \rho \iota \beta \dot{\omega} \varsigma ~ \sigma \tau \iota \zeta ~ \alpha v \dot{\alpha} \gamma \kappa \varepsilon \varsigma$
 $\mu \varepsilon \lambda \dot{\varepsilon} \xi \varepsilon \iota \varsigma \chi \rho \eta \sigma \not \mu \circ \pi о \iota \omega \dot{v} \tau \alpha \varsigma \dot{\varepsilon} v \alpha \mu \varepsilon \tau \alpha \beta \lambda \eta-$

 $\lambda i \sigma \tau \alpha \varsigma \tau \omega v \delta \varepsilon \delta \circ \mu \varepsilon \dot{v} \omega v \mu \alpha \varsigma$（ $\Sigma \chi .8$ ）．
$\Gamma ı \alpha$ v $\alpha \gamma \rho \dot{\alpha} \psi о \cup \mu \varepsilon \mu \iota \alpha$ к $\alpha \iota v o u ́ \rho ı \alpha ~ \lambda \dot{\varepsilon} \xi \eta$ ，
 $\tau \eta \lambda \dot{\varepsilon} \xi \eta \eta \kappa \alpha \iota \gamma 1 \alpha \tau \eta \delta о \mu \eta \dot{\eta} . К \alpha \tau \alpha \gamma \rho \alpha \dot{\alpha} \varphi \cup \mu \varepsilon$ тo π тoú givaı $\eta \lambda \dot{\varepsilon} \xi \eta$ $\sigma \tau 0 \vee$ pointer pword $\kappa \alpha \iota$ то π тoú вivaı $\eta \pi \rho \circ \eta \gamma \circ \dot{\mu} \mu \varepsilon \vee \eta$ $\delta о \mu \eta \dot{\eta}$ $\sigma \tau 0 v$ place． $\mathrm{H} \alpha \rho \chi \eta \dot{\eta} \tau \eta\langle i \sigma \tau \alpha \varsigma, \theta \alpha$ $\mu \pi \circ \rho о$ ӥ $\varepsilon \varepsilon$ v α о $\mu \varepsilon เ \oplus ் v \varepsilon \tau \alpha \iota ~ \delta i v o v \tau \alpha \varsigma ~ \sigma \tau о v$
 $v \alpha \psi \dot{\alpha} \xi$ оо $\mu \varepsilon \tau \eta \lambda i \sigma \tau \alpha \mu \dot{\varepsilon} \chi \rho \iota \tau \eta \nu \alpha \rho \chi \dot{\eta} \tau \eta \varsigma$. $\Sigma \tau о \quad \Sigma \chi .9 \beta \lambda \dot{\varepsilon} \pi о \cup \mu \varepsilon \quad \tau \alpha \pi \varepsilon \rho \iota \varepsilon \chi \dot{\rho} \mu \varepsilon v \alpha$ $\mu \dot{\varepsilon} \rho \circ \cup \varsigma ~ \tau \eta \varsigma \mu v \dot{\eta} \mu \eta \varsigma$ ．
＇I $\sigma \omega \varsigma, \mu \dot{\alpha} \lambda \iota \sigma \tau \alpha, v \alpha \dot{\eta} \tau \alpha \nu \kappa \alpha \lambda \dot{\tau} \tau \varepsilon \rho \circ v \alpha$ $\tau \rho о \pi о \pi о เ \eta \dot{\sigma} о \nu \mu \varepsilon$ ііүо $\tau \eta \delta о \mu \eta \dot{\eta}, \dot{\omega} \sigma \tau \varepsilon$ v α $\kappa \alpha \tau \alpha \gamma \rho \dot{\varrho} \varphi \varepsilon \tau \alpha \iota$ каı η вло̇ $\mu \varepsilon v \eta$ каı η $\pi \rho \circ \eta \gamma \circ \dot{u} \mu \varepsilon v \eta \eta \quad \varepsilon \gamma \gamma \rho \alpha \varphi \eta \dot{\text { ．}}$ ．K $\dot{\tau} \tau \iota \tau \varepsilon ̇ \tau o t o ~ \theta \alpha$ $\mu \alpha \varsigma \quad \varepsilon \pi \varepsilon \dot{\varepsilon} \rho \varepsilon \pi \varepsilon$ v $\alpha \mu \varepsilon \tau \alpha \kappa і$ voü $\mu \alpha \sigma \tau \varepsilon \mu \dot{\varepsilon} \sigma \alpha$

$\star \star \star$

 ＂index＂ка兀＂pointer＂，$\pi о \cup \mu \varepsilon \tau \alpha \varphi \rho \dot{\alpha} \zeta о-$
 $\delta ı \alpha \varphi о \rho \varepsilon \tau \iota \kappa \dot{\alpha} \pi \rho \dot{\alpha} \gamma \mu \alpha \tau \alpha$ ．Гı α v α к $\rho \alpha \tau \eta \dot{\sigma o v-~}$ $\mu \varepsilon, \sigma \tau \eta \quad \sigma \varepsilon \iota \rho \dot{\alpha} \tau \omega \nu \mu \alpha \theta \eta \mu \dot{\alpha} \tau \omega \nu \mu \alpha$, $\varphi \alpha v \varepsilon \rho \eta \dot{\eta} \alpha \cup \tau \dot{\eta} \tau \eta \delta 1 \alpha \varphi o \rho \dot{\alpha}, \tau \eta v \dot{\varepsilon} v v o l \alpha$ « $\delta \varepsilon i \kappa \tau \eta \zeta$－pointer»，$\theta \alpha \tau \eta \nu \alpha \pi o \delta i \delta o v \mu \varepsilon \mu \varepsilon$ $\tau \eta \nu \alpha \gamma \gamma \lambda \iota \kappa \dot{\eta} \lambda \dot{\varepsilon} \xi \eta$（pointer），$\kappa \rho \alpha \tau \dot{\omega} \nu \tau \alpha \varsigma \tau \eta$
 index．［ $\Sigma . \tau . \mathrm{M}]$

Meүalávouนє ouvexஸ́s....

Пра́үиап,
 $\tau \omega v$ oпoí ω v tovs loxvpoús $P C$ t ωv etalpióv v乡nlins texvoloyiac IBM, DIGITAL каı APPLE.

 H/Y 400 átoua.
 (kovtá oto кغ́vtpo YГEIA) - Tך入. 6822152, 6841214

APPLE

סnuloupyia nuعpo入oyiou

JPROGRAM CALENDAR；

（ \ddagger PROGRAM TD CALCULATE A CALENDAR FOR ANY YEAR REQUIRED FROM 1752 TD 4902 （\％UBING ZELLERB CONGRUENCE
（
（宾 PROGRAM WRITTEN BY PIERS CHAPPLE

（＊VARIABLE DECLARATIDNB＊）

VAR

s ：INTERACTIVE；（\％BENDS OUTPUT TD THE BILENTTYPE PRINTER＊）

TABLE ：ARRAY［1．．2， $1, .42]$ DF INTEGER）（\＃HOLDS THE DAYS OF TWO MONTHS＊） DAYEINMONTH：ARRAY［1．．2］DF INTEGFR；（\＃HOLDS THE LENGTH DF TWO MONTHE\％）

YEARREG，（\＃HOLDE THE YEAR REGUIRED＊）
YRBTARTA，
YRBTARTB，
DAYCALC，
LEAPYEAR，
EDMONTH，
DAYBREM，
COUNTA，
COUNTB，
LOOPA，
LOOPB，
LOOPC，
LOOPD，
LOOPE：
（＊TEMPORARY VARIABLE FOR CALCULATING THE FIRBT DAY OF THE YEAR象） （（\＃TEMPDRARY VARIABLE FOR CALCULATING THE FIRBT DAY DF THE YEAR （ （HDLDS THE FIRBT DAY OF THE YEAR＊）

3 ：BEEIN
DAYSINMONTH［21：$=30$ 3
DAYEI NMDNTH［2］：$=303$ ，YEARRER：4） 3 WRITE（B，＇MUY ，YUNE ，YRREQ） WRITELN（S，＂ 30 ， END；
4 BEGIN DAYSINMDNTH［1］：$=313$
DAYEINMONTH［2］：$=313$ ，YEARREQ：4）；
WAYBITE（S．，JULY＇，YEARRE，AUEUST ，YEARREQ）।
WRITELN（S，＂＂30，＂
END；
5 ：BEEIN
DAYSINMONTH［2］s $=313$ ，YEARREQ：4）；
WRITE（ 5 ，＂SEPTEMBER＇YEARER ，YEARREQ）
WRITELN（B，＂ 30 ，，YEARRE
END
6 ：BEGIN
DAYEINMONTHE［2］s $=313$ ，YEARREQ 4 4） WRITE（ 3 ，＂NOVEMBER D＇YCEMBER＇，YEARREO） WRITELN（S，＇ 30 ；DECEMBER ，YEARREQ）
END
END；
END）

BEGIN（\＃PRDGRAM\％）
（＊）${ }^{(}$NITIALISE VARIABLES＊）
REWRITE（ 8 ，＂PRINTERI＂）3
YEARRER：$=03$
YRSTARTAB $=0$ ：
YRETARTBS $=0$ ：
DAYCALC：$=03$
LEAPYEARs $=01$
EDMONTHz $=01$
DAYSREMB $=03$
COUNTA：$=03$
COUNTB：$=03$

INTEGER，
（ THLCLLTE WHETHER THE YIAR IB A LEAP YEAR＊）
（BTHIS IS BET WHEN THE END OF A MONTH IS REACHED＊）
（＊HOLD8 THE NUMBER DF DAYS REMAINING IN THE WEEK（i）
（\＃UBED FDR PRINTING OUT THE DATES＊）
（
（＊MAIN ROUTINE LOOP
（ （LOOP USED WHEN LOADING ARFRAY WITH DAYB OF THE MONTH＊）
（＊LOOP USED FOR GENERAL PURPOBE＊）
（ \ddagger LODP UBED FOR PRINTING OUT THE DATES\＃）
（\％LODP USED FDR PRINTING DUT THE DATES＊）
（解INDS OUT REQUIRED YEAR
WRITELN（＇FOR WHICH YEAR DO YOU REQUIRE A＇）＇
WRITE（＇CALENDAR（1752－4902）？s＂）；
READLN（YEARREQ））
（事CHECKB WHETHER REQUIRED YEAR IS VALID＊）
IF（YEARREQ．\leqslant 1752）OR（YEARREQ＞4902）THEN
WRITELN（＂THE REQUIRED YEAR IS INVALID＇）ELSE

BEEIN（\＃CALENDAR＊）

（重WORKS DUT THE FIRST DAY DF THE YEAR妾）
YRSTARTAI＝（（YEARREQ－1）DIV 100）；
YRBTARTBi＝YEARREQ－ 1 － 100 YRSTARTA；
DAYCALCs $=799+$ YRSTARTB $+\left(\right.$ YRSTARTB DIV 4）$+\left(\right.$ YRSTARTA DIV 4）－2 ${ }^{\text {FYRSTA }}$
DAYCALCz＝（－（DAYCALC－（（DAYCALC DIV 7）7））+1$) ;$
WRITELN；WRITELN；
（＊WORKS DUT MONTH AND LENGTH OF MONTH＊） PROCEDURE WHICHMONTH（LODPA：INTEGER）；
BEGIN
WRITE（S，＂＇9）；
CABE LDDPA O
DAYBINMONTH［1］：$=31$
DAYBINMDNTHL21：$=28$＋LEAPYEAR： WRITE（B，＂JANUARY＂，YEARREG；4）； WRITELN（S，＂＇ 30 ，＂FEBRUARY＂，YEARREQ）； END；
DAYBINMANTH［1］：＝31；
DAYBINMONTH［2］：$=30$ ；
 MRITELN（B，＂ 30 ，＂APRIL＇，YEARREQ）； END；

APPLE

OUT WHETHER REQUIRED YEAR IS A LEAP YEAR 3 is *WORKS QUT WHETHERAREQ DIV 4) 4) THEN LHEN LEAPYEAR: $=0$ 3 IF (YEARREQ $=($ (YEARREQ DIV 100) 400)) THEN LEAPYEAR: $=13$ IF (YEARREQ $=($ (YEARREQ DIV 400$)$
(*BTART OF MAIN CONTROL ROUTINE*)
FOR LODPAI $=1$ TO 6 DO BEGIN

WHICHMONTH (LOOPA)
GOTD PROCEDURE TO FIND MONTH DETAILS)
*LOADS ARRAY (TABLE) WITH THE
FOR LODPC: $=1$ TO 42 DO BEGIN FOR LOOPBI $=1 \quad>$ DAYBINMONTH[LLOLC

IF (DAYCALC ${ }^{2}$, $O D P B 15=$ DAY DALCCALC $=$ DAYCALC +1313
TABLE ELOMONTH $=0$) THEN DHE DAYGREM: $=$ DAYBREM
IF IF (EDMDNTH = 0)
END;
(WORKS DUT THE BTART OF THE NEXT MONTH*)
DAYSREMI $=$ DAYSREM MOD 73
DAYCALCi=1 - DAYSREMI
DAYSREMS $=03$
DAMMANTHi= OI
END:
(*PRINTS OUT THE DAYS OF THE WEEK*)
WRITELN(S) 3 TD 2 DO BEGIN3 THU FRI SAT', ': 1113 FOR LOOPC: $=1$ TON TUE WED WRITE (S, " BUN
END;
WRITELN (B) 3
(*PRINTS OUT THE DATES BEGIN

- DAYBINMONTH[1]) THEN
 IF (TABLE $[1$, COUNTA $]$, 1 , COUNTA 312 ,"
IF (TABLE WRITE 8, , TABLE $[1$, COUNTA $] 12$,

END;

WRITE (8, ":9) 37 DO BEGIN3
FOR LQDPEimi
IF (TABLE [2, COUNTB] $>$ O
IF (TABLE WRITE (B, TABLE [2, COUNTB]:2,
END:
WRITELN(S)
END;

COUNTAI $=03$

COUNTB: $=03$
WRITELN(S) ; WRITELN(S) ; WRITELN (3) 3
MAIN CONTROL ROUTINE*)
END (ECALENDAR*)
END. (*PROGRAM*)

ПРОГРАММА ГIA ГРАФIKEะ ПAPAETA乏EIE

 ठivetaı оє μ орфи் пои катадаßаivєı о BASIC INTERPRETER
 tп $¢$ MS-BASIC:

 то disk drive пои θ а хрпоюопоьі то пюојүра μ а (то drive G :
 TI PROFESSIONAL).
Tо ппо́үра $\mu \alpha$ үрд́фтпкє оє T.I Professional $\alpha \lambda \lambda \dot{\alpha} \mu \pi о \rho \varepsilon і$ va т $\rho \dot{\varepsilon} \zeta \varepsilon ı$ кaı $\sigma \varepsilon \dot{\alpha} \lambda \lambda$ оuৎ compatible computers. Г $\rho \dot{\alpha} ф т \eta к \varepsilon$ апо் тои аvaүvய்oтท μ ас:

A $\lambda \dot{\varepsilon} \xi$ п Avaotaoiou

 THEN LINE-XINT "MATA KAN EYNAPTHEMA AYSHEHZ THN
NEXI
\#

 IA OD OPEN "G:SYGE "G:SYN. BAS", INEI KAIOIO :CHAIN MERGE
110 BEEP: PRINT "EXEI

TI Professional

$y=R N D * 100$

digitized by greekrcm.gr

Brghionapovoiaon

TIT＾OE：BASIC ©ERPIA－ A ГYTIPAФEA乏： EYATIENOE ©． АГГЕЛIAHE，$\Delta \mathrm{m} \lambda$ ． НАєктродо́yo̧－ Mnxavo ${ }^{\text {óyos，Avàutís－}}$ Проүрариатьттйя KENTPIKH $\triangle I A \Theta E \Sigma H:$ A．ПАПАЕЛТHPIOY， Eroupvàpa 23，
Tท $\lambda .3641826$－ 3609821 AOHNA 1984 EENIAEE： 209 TIMH： $500 \delta \mathrm{px}$ ．

Eva ако்un ßıß入io غंpxstaı va про－
 rapovaritzl in $\gamma \lambda \omega \bar{\omega} \sigma a$ BASIC．To Brßдio tou к．Ayүe入ion，eivar ecape－ тाкс́ arìȯ kal katavontó，evè èxel oav

 anó th λ ǘn rouc．

To $\beta_{ı} \beta \lambda$ io $x \omega \rho і \zeta \varepsilon \tau \alpha ı$ о $3 \mu \varepsilon \dot{\rho} \eta$ ．इто

 ш̈ote va μ ropsi o avaүvíotns va

 биүүраழє́а¢，va $\mu \eta \nu$ аvatן $\dot{\chi \varepsilon ı ~ k a v \varepsilon i ¢, ~}$

 проүрациатіотп் отіৎ вчариоүє்ऽ тои．

TIT $\wedge O \Sigma$ ：PASCAL ェҮГГРАФЕА $:$ Г $І \Omega Р Г О \Sigma$ ఆEO $\triangle \Omega$ POY BSEE，MSIE． KENTPIKH $\triangle I A \Theta E \Sigma H$ ：A． ПАПАЕЛТНРІОY， इtoupvápa 23 NEA EK \triangle O $\Sigma H 1985$
 TIMH： $880 \delta \rho X$. $\Sigma \mathrm{E} \Lambda \mathrm{I} \Delta \mathrm{E} \Sigma: 194$

H PASCAL عivaı $\mu ı \alpha$ охहтık kaıvoủ－ рıа ү $\lambda \dot{\omega} \sigma \sigma \alpha$ проүра $\mu \mu \alpha т ı \mu о \dot{v}$ каı бтทи
 β в β ia пои va tпu ava λ úouv．Гıа тоия

 tov Г．ЄEO $\triangle \Omega$ POY $\mu \varepsilon$ тои о $\mu \dot{\omega} \nu \cup \mu$ о тіт入о．

 үıбтغ́¢ каı тои проүра $\mu \mu$ итıбио́ каı $\mu ı$

 ү $\lambda \dot{\omega} \sigma \sigma \alpha, \dot{\text { ón }} \omega \varsigma$ sivaı η PASCAL．

 апл $\dot{\varepsilon} \varsigma ~ п р о т а \dot{\sigma \varepsilon ı \varsigma ~(r e a d, ~ w r i t e, ~ f o r . . . d o, ~}$
 плока $\theta \dot{\varepsilon} \mu a t a$ биvaртทंбєıc EOF，врүа－ бiє¢ $\mu \varepsilon$ архвia，poutiveৎ PUT кaı GET

 парабтáøعıц．

ATEAHE EIEATSTH YПO＾OГİTRN；

Ауаппто́ Computer yıa Oגous，
 т ωv т $\varepsilon \cup \chi \omega ் v ~ \sigma о u ~ к а ı ~ Ө а ~ \sigma \varepsilon ~ а п а \sigma \chi о \lambda ウ ் \sigma \omega ~ \mu \varepsilon ~$
 $\varepsilon в \delta о \mu \dot{\jmath} \delta \varepsilon \varsigma$

Eiual ตoıtпtins tou Δ＇＇Etous ths Nоиıгія тои А．П．Ө．каı про́квıтаı като்пь
 рıо ото Аvvо́вєро то прผ்то бєкапєvӨウ்－ $\mu \varepsilon \rho о$ тои $\Delta \varepsilon к \varepsilon \mu$ вріои 1985．Аıава́弓оvтаऽ
 т ωv иполоүıотஸ்v otn Δ ．Гعpuavia عivaı

 $\eta \mu \dot{\rho} \rho \varepsilon \varsigma, ~ п \dot{\omega} \varsigma ~ \delta \eta \lambda a \delta \dot{\eta}$ ка́̈є E入入Пvas

 тои идıкои́ пои катвंхш．

 окопо் $\mu о \cup, ~ \sigma \varepsilon$ паракалы่ va $\mu \varepsilon$ вvпиє－ рஸ்бદıऽ бхєтіка́ $\mu \varepsilon$ та ауаүрачоо $\mu \varepsilon v a$ каө்்ऽ каı уıа то av ıбхи்عı autウ் η баб $о о \lambda о ү ı к \dot{\eta}$ атغ்лвıа．

 vтПоך μ пореіц va μ оu ठш்бعıs．Av عival

 عivaı поли் коvтаं $\dot{\omega} \sigma \tau \varepsilon ~ v a ~ \mu \eta v ~ \dot{~} \chi \omega$

 oou．Euxapiotஸ்．

Аүапптѓ к．Аүрокш்бта

 ат $\varepsilon \lambda \dot{\omega} \varsigma$ то μ ккоӥполоүıотท் тои апо $\mu і$ ia

xpウ்on．T η v anávtnon auti $\dot{\varepsilon} \delta \omega \omega \sigma \varepsilon$

 Raymone Dury．
 ра́бната，үıаті єкрєцойv та ако̇лоиӨа $\varepsilon \rho \omega т п \mu а т ı к \dot{\text { ：}}$
a） Ta napanȧva ıoxu̇ouv μ óvo．ornv

 aпо் غ́vav＂үıа пробюпıки் хрர்on＂；Eпı－

 тПоך $\dot{\varepsilon} ү ı \varepsilon \varepsilon$ аркєта́ поо́оюата．

Ooov а甲орá тпv єпıлоүท் єvós uполо－

 прохшрท்бєтє оє ка́поıа ауора́．
 Amstrad，μ пор $\varepsilon і т \varepsilon$ va $\varepsilon v \eta \mu \varepsilon \rho \omega \theta \varepsilon і т \varepsilon$ ava－
 ＂Computer＂kaı тои＂Pixel＂．Гıa тıৎ тıцв்ऽ
 плпрочорівя．
 va uпоүра $\mu \mu і \sigma о и \mu \varepsilon$ о́ті $\eta \mu \varepsilon ү а \dot{\lambda} \eta$ півоп xpóvou $\mu \mathrm{a}$ द aпаүорعu̇єı va aпаvтá $\mu \varepsilon$ проошпเка่ бє عпเбто入غ่ऽ avaүvตотผ்v $\mu \mathrm{as}$ ．

E＾AHNIKOI YПONOTIETE

Аүаппто́ перıобıко்，
Eiцаи үоıтптія ото Нра́клвıо каı
 Кат＇$a \rho \chi \dot{\eta} v$ Өa $\dot{\eta} \theta \varepsilon \lambda a$ va $\sigma \varepsilon$ бuүхар $\dot{\omega}$ үıa $\pi \eta v \dot{u} \lambda \eta$ оои．$\triangle ı a b \dot{\alpha} \zeta \omega ~ п о \lambda \lambda \dot{\alpha} п в \rho ı о б ı к а ́, ~$

 о $\mu \omega \varsigma$ поu боu үрáழ عivaı á入入оऽ．
 кв่ऽ втаıрієऽ пои катабкєид̧́ouv H / Y ，

 Γ_{1}＇аито́ бє парака $\lambda \dot{\omega}$ va $\mu о и$ пвıऽ бє поı
 عivaı ठuvatóv апо́ μ д́роऽ бои va парои－
 H／Y．

Мв вктіцпоп каı Өаицабио்

HPAKAEIO

Аүапптє் к．＾ой̈ъо，
इas عuxapıoтоü $\mu \varepsilon$ үıа та кала̇ oas入óyıa．Пра́үцатı unápxouv عтаıрі६ऽ otov
 лоүıотє́s．Аvaцріßо入ла η архаıотєр η عivaı η Gigatronics，пои ако入оиӨعі ठıкп

 отрı६ऽ عтаıрі६ऽ，عivaı ото бủvo入ó tous

 катпүоріа аuтท் ε vтáooovtaı η G．I．S．，$\mu \varepsilon$
 \＆$H^{\prime \prime} \mu \varepsilon$ то Sigma XT каı η ATS $\mu \varepsilon$ то о $\mu \omega ் v u \mu$ о μ оvтغ̇ло．

Пар＇о́t ol uпо入оүıбтغ́s autoi $\dot{\varepsilon}$ Xouv $\varepsilon \mu \varphi a v i \sigma$ іі аркєтд் про́очата，غ̇хоuv
 ठıкаı்бouv тіৎ прообокієя $\mu \mathrm{as}$ ，Өа то

 $\lambda \varepsilon п т о \mu \varepsilon \rho \varepsilon ı а к \dot{~} \dot{\omega} \sigma \varepsilon$ va той пароибiá－
 періооо́тєрєऽ плпрочорієऽ $\mu п о р \varepsilon і т \varepsilon ~ v a ~$
 compatibles＂tou teủxous 30.

ANㅕNNigh

П $\Omega \wedge$ OYNTAI yıa Spectrum 16－48K 40 пршто்типа каı акиклофо́рŋта паıхviठıа $\sigma \epsilon$ $\mu і а$ кабє̇та．Тıй $1.000 \delta \rho x$ ． Tпл．3219691－7232735．

TEXAS INSTRUMENT TI 59 $\mu \in$ PRINTER PC－100 C．Xa－ тそппапабо்поилоs Nıко்入аоs． Tп入．4520453－4532903．

ZHTOYNTAI $\delta \rho a \sigma$ Tท்pıo μ a－ Өŋте̇ऽ＾uкєiou otףv єпархіа
 viкoús umo入oүıatés yıa va ava入áßouv oav avтıпро́бшாо। т ηv прош்Өŋon बпоuठüv $\mu \epsilon$ ал入ŋлоүрафіа．Гıа пєрıббо்－ т $€ \in \varsigma$ п $\lambda \eta \rho о ф о р і є \varsigma ~ т п \lambda є ф \omega-~$ vєiбtє бто 01－3645114 ウ் үра́ $\psi t \in \mu$ ац ото Pen－Pal Sy－ stem，इo $\lambda \omega \mu$ oủ 54， 10682 A日riva．

AпПОӨНКН Home－micros пробфє̇рєІ $\sigma \in$ тіцє̇ऽ yvшрıціая Commodore 64：43．000，

Spectrum + ：29．500，Spec－ trum 48 K ： 21.500 ，Amstrad 464：59．500，Commodore d． drive IS41：43．000．П入ṅpクs $\sigma \in І \rho \dot{a} \pi \in \rho ф є \rho \in І а к \dot{\omega} v$ ．Yпєú－ Өuvo service．П入профорієऽ： 6399738－6380411
$\Pi \Omega \wedge$ EITAI TRS 4 P $64 \mathrm{~K} \mu \in 2$ disk drives．Про́үра $\mu \mu$ а $є \mu п о-$ рıко்，visicalc，spreadsheet， кaӨ்்ц кaı TRS model $100 \mu \epsilon$ 32 K каı 5 проүрд́ $\mu \mu а т а$ ．П入п－ рофорієऽ，тпл． 9820639 （5．30－10．00 $\mu . \mu$ ．）．

ГIATPOY乏，$\triangle I K H Г O P O Y \Sigma$, ПANEПIミTHMIAKOY乏，$\mu 0-$ vaঠıко́ про́үра $\mu \mu \alpha є п є \xi \in \rho ү а-$

ПРОГРAMMATA YIG COM－ MODORE 64， 128 IBM Co－ mpatibles єпוбтпиоvıка่，ϵ к－ паı $\delta \in \cup т і к \dot{\alpha}, \epsilon \mu$ поріка́，$\epsilon п \in \xi \in \rho-$
yaơias кєı $\mu \dot{\epsilon} v o u$ ota $\in \lambda \lambda \eta$ viкä． 7513717

COMPUTERS COMMODO－ RE 64，128，PC 10， 20 （IBM compatible）ठ்́po 100 про－ ура́ $\mu \mu$ ата（LOTUS，MULTI－ PLAN к．d．）．T η 入． 7513717.
$\Pi \Omega \wedge$ EITAI TI 99／4A，а $\mu \in T a-$ хєірıбтоя $\mu \in$ ка入ӹ́ठıо кабєто－ ф山்vou，cartridge pac－man，
 проүрациатıбцои்，каı бıа்фо－ ра проура́ $\mu \mu а т а . ~ Т щ и ்: ~ 16.000 ~$ $\delta \rho x$ ．Плпрофорієऽ ото тплє́－ фwvo： 9337710.

П $\Omega \wedge$ OYNTAI проүра́ $\mu \mu$ ата yıa COMMODORE $64 \sigma \epsilon$ ঠібко каı кабє̇та паıхviঠıa－ UTILITIES єпаүүє $\lambda \mu a т$ тк்－ COPIERS кт入．Tŋ入．7653864， aпоү．$\dot{\omega} \rho \in \varsigma$ ．
$\Pi \Omega \wedge$ OYNTAI проүра́ $\mu \mu$ ата yia VIC－20 SNAKE FLIPPER

ANTISPACE CITY－BOMBER SPACE WORM клп． 5234826

7．$\Theta \in \lambda \in$ ріт η s， 9 п．$\mu .-2 \mu . \mu .$, $\Sigma о \lambda \omega \mu$ ои் 55 ．
$\Pi \Omega \wedge E I T A I$ кaıvoúpıos $Q L \mu \epsilon$ غ́yxpwho monitor prism QL 14．Плпрофорієя 3642924 （12－4 $\mu . \mu$ ．）， 3609450.
$\Pi \Omega \wedge E I T A I$ New Brain AD， кабєто̇фwvo Panasonic，Pri－ nter seikosha GP－250 X，soft－ ware technical manual geting more from your NB，Dicecting your NB，BE giners manual 75．000．－А．Аvtuvómoùos， 9614350.
$\Pi \Omega \wedge$ EITAI ZX－Spectrum 48 K，Joystick kaı ėva Interface－ 2．Enions 25 пaıxviסıa yıa ZX－ Spectrum．＇Oגа $\sigma x \in \delta$ óv каı－ voủpıa $\mu \in$ т ηv єyүúnoฑ̇ tous． Tı $\mu \dot{~} \sigma u \zeta \eta т \dot{\sigma} \sigma ı \mu \eta 20.000 \delta \rho x$ ． òла μ аگі．＇Опоюоs прола́ßеı． T $\eta \lambda .4136564-4172965(2-8)$

AALNKAL	97
ABC	109
AӨnvaikn Computerland	188
Alimos	71， 100
A μ Computers	58， 139
Apricot Hellas	162
ASPECO	207
ATCO	47， 90
ATS	151
BORA CS	196
BYTE CA	75
Bull	135
Business microsystems	94
Г $\varepsilon \omega \rho$ práరiŋ¢	8
CCS	210
Computer Club	105
Computer life	185
Computer line	141
Computing Center	164
Compudata	95
Cosmtos	104， 175
Cyclos	80
Data Management	43， 119
Datamedia	93
Data Micro	96
Data Rank	77
Delmar	144
Delta Thessaloniki	65
Delta Sound	98

MPS	78
Mwpaïtnc－\áokapŋ̧	87
NCR	157
Eu̇uns	143
Olivetti	66
ORANGE	6
ПОМ	216
ПроипӨżая	114
Protime	46
Páбıo Katoúná	193
Rokkas A micro	13
Selcon	99
Singular	50
	216
Systematics	121
TDK	137
TECHWARE	3， 18
Technoland	57
Texvosıȧoraon	85
Texvouáotep	60
The Computer Shop	11，88
Тоа́ка入оs	100
Unidata	181
Unisoft	147
VIKELIS	106， 131
Xoovaios	152， 207

ortos ariat

AOHNA
 ANTIIPOERMIEE

－ABACUS Фaìnjoo 52， 9216791 （MAI，Basic Four） －ABAE，\wedge ． uyypoú 375， 3234743 （Lynx）－ABC SYSTEMS AND SOFTWARE AE，\cap ．Euypoú 44 9025645 － 49 （Novelli，Santa Clara Systems，Microcomputer
 3－5， 9518012 （Prime）－ADA A．E．，E入．Beviç̇̀̀ou 20 Ka $\lambda \lambda_{1} \theta \dot{\varepsilon} \alpha, 9588651$（ICL，COPAM）．• ADVANCED TECHNOLOGY SYSTEMS，Aктì Moutoonoùえou 64 4180725 （Mannesmann Tally，Kaypro）－ANFOPIOMOE， ＾． Uuypoù 183,9345858 （Cromemco，Norand）－ANKY $\mathbf{\Omega N}$ ， Kодокотршivn 9， 3226016 （Bar Code Systems）－A－ Computers，Aok λ nmoú 151， 6448263 （MPF－1，MPF－II， Monitors Sanyo）－AEAPAHE A．E．，Акабпиiac 96.98 3607836 （BBC，Acorn，Sord）．－APRICOT HELLAS， Міхаえдакопоӥлоu 125， 7793411 （Apricot）．－ATKO COMPUTER SYSTEMS，Mzooү̧iшu 74，7783659， 7785950 （Stride，Sand Piper，Houston Instruments Scribe，Okidata）

A．ПOYAIADHE \＆EYNEPLATEE E．П．E．，Kou－ uràpn 5， 3624170 （Tl．99／4A）－BURROUGHS HEL－
 －C．A．C．，Meooyeiwu 259， $6719722 / 4$（Cromemco，Facit， Ericsson，Information Systems，Data Products）－CELBAC YПIO＾OIIETIKH EIIE，Пavenoomuiou 20， 3616727 （Fortune Systems）－TIIATPONIK亡 EPEYNA KAI ANAITYZН YHONOГIETRN E．П．E．，Λ ．Побعוסん̈voc 18，9429477－78－80（Gigatronics）－COLUMBIA DATA PRODUCT L．T．D．，Computer \＆Peripheral Systems Dioxápouc 10，Хіतто＂ $11528,7240134,7241873$（Columbia）
 9567934 （ICL）－COMPUGEN E．II．E．，Niкnc 20， 3246516 （Genie）－COMPUMAC，Aбк λ nпוou 9， 3620812 （Am－ strad）－COMPUTEC SYSTEMS，Гpunápn 147，Ka λ_{1} Ө̇̇a， 9523100 （Goupil）－COMPUTER LINE，\triangle ．Aspona－ yirou 3，9225227，（Compaq，Quadram）－COMPUTER TRADE CENTER LTD，Apkaбiac 29， 7713121 － 2 （TDI Pinnacle Computers，UDM Computers，UDM Drives，Power Bank，Polaroid CP．50，VCSD－P System）－CONTROL DATA INC，\wedge ．£uyypoù 194， 9510811 （C．D．C．）－COR－ VEL SYSTEMS，Акршіvоc 1 \＆Yипттой 99，7011801－4 （Corvus，Einstein）－DACC／UNIVAC HAEKTPONIKOI $\triangle I E P E Y N H T A I, ~ \Sigma$ ． Uuv6́ơouou 24， 3639112 （Sperry ．Univac） －DARLAS ELECTRONIC APPLICATIONS Ltd， Kir ω voc 7，Aıy $\dot{\lambda} \lambda \varepsilon \omega, 5986179$（Polar，Aval，Pocket Technology， Hakko，Stag）－DATAMATICA，Λ ．Knфioiac 124， 6911381 － 6911413 （Texas Instruments）．－DATAMEDIA， Eapavtanópou \＆Фwkaiac 4819815 （Diablo，Rank Xerox， Dysan，Qume，Hermes，Triumph ．Adler，Tandon Printronix） －DATAMICRO，E入．Beviç̇̀ou 287， 9419611 （IMS， Anadex）－DATAPAC A．E．，Aßغ̇p $\omega \varnothing$ 3， 5221797 （Plexus） －DATAQUEST，Mixa入акопой ${ }^{\text {ou }} 2,7226821$（Questar） －DATATECHNICA EIIE，$\Delta \varepsilon \lambda \eta ү ш \dot{\rho} \rho \eta n 55-59,5149982$ （Kienzle，Facit）－DCC（Data Comp．Corporation），
 Equipment Corp．）－DELMAR EIIE，$\Lambda \varepsilon \omega \varphi$ ．X povoпoù خou 62，Пa入aıó Фàえnрo， 9828293 （Corona，Prolok，Sendata， Knowledgeman）－DIGITAL TECHNOLOGY HEL LAS，Doïpávnc 118， 9564594 （Mini H／Y Digital Technology） －DRAGON COMPUTER HELLAS LTD，Σ toupvá－ po 32， 5228422 － 3 （Dragon）－ECS AE，Epuoú \＆$\Phi \omega k i \omega v o c$ 8，3225426（Sinclair，Epson，Taxan）－ELEA COMPUTER SYSTEMS E．П．E．，Ba入tetoiou $50-52,3602335$－ 3605535 （Convergent Technologies，Spectravideo）．－ELECOMP， Euyypoù 262， 9514944 （Zenith，Mini H／Y Plessey Tepuatikả IBM compatible）．ELECTROHELLAS，Map．Zeac B3 Пॄıpaiác， 4511087 （Super Brain，Seikosha）－ELECTRON，
 －EANHNIKH BIOMHXANIA HAEKTPONIKRN
 6927792 （Continental）－ENKAT A．E．，इö $\lambda \omega v o c$ 26， 3640719 （Atari）－EAAHNIKH PADIONAYTIKHA．E． Mrouproùivaç 26， 4123471 （Data Point，Centronics）－EL－ SHAEKTPON．EIIIXEIPHEIAKAEYETHMATAA．E．， Anuокрітоu 39， 3639112 （Triumph ．Adler，Alphatronic CPT Word Processors，Candalt，Paradyne ．Telsat Modems） －ELTRONICS LTD，A $\lambda \omega \pi \varepsilon \kappa \dot{\wedge} \varsigma ~ 2,7210669,7249511.5$
（Tektronix）－EME A．E．，Σ ò $\lambda \omega v o c ~ 96, ~ 3634308$（Casio） －ZILOG MICROSYSTEMS，Δ пиофஸ்vtoc 64,3469002 （Zilog，MSI Гєриavikà，MBL printers）－HEWLETT－ PACKARD S．A．，\wedge ．Knфөoiac 178， $6726090 \cdot 6$（Hewlett Packard）－HONEYWELL BULL S．A．，＾．इuyyooù 44， 9239991 （ICII Honeywell－Bull）－GCM S．A．，E入．Bevi（̧̇̀ ou 3， 9235423 － 9237276 （Data Products）．－IBM W．T．C．，
 Corp，Meooyeiwu 2，Пüpyoc Aөnviuv， 7778493.5 （Santa Clara Systems，Sysgen）－INFODATA COMPUTER SY－ STEMS Ltd．，Kobiapn 5， 6421368 （Calcomp Plotters） －INFOKRAFT E．II．E．Computer turnkeysystems， ＾．Å nuயuv 104，5143088－5143089（Oki，MAD）－INFOR－
 －INFOQUEST，Гह̀ $\lambda \omega$ voc 9， 6411532 （Tulip，Hawk， Quantex，Star，Xebec）－INFORMEK A．E．，Mrooysiuv \＆ Пanaб́à 2， 6927650 （Quantel）－INFOSYSTEMS，Movic Петра́кn 8 AӨtiva $11521,7222177,7227234$（Software thc Cincom）－INFOTEC，Axapvïu 10， 5231043 － 5233123 （Future，Ekrunntéc Nippon Crane）－INTELECT，
 （Hewlett－Packard PCs）－INTERMEC HELLAS AND MIDDLEAST LTD，Міха入̀акопойдоu 125， 7779695 （Bar code Data Collection Systems）K\＆L COMMERCIAL AND TECHNICAL LTD，T $\tau \omega \rho \tau \zeta 10$ ， 3622319 （Elite，Mugen，Venix－86，Digital Products，Borland）

KONIOHOYAOE ELECTRONICS E．П．E．，\wedge ．A入e． ६ảvópac 56， 8238100 （Tandy，Radio Shack）－KRONOS ELECTRONICS，Kоخокотрїип 105，4514307，4525581， 4132195 ，Mzooyघiwv 317， 8029468 （Stearns）－LANTEC， A．Knфıoiac 32 Atrina Center 6832646 （Wang）－IOMAK EПE，इapavtanópou 15 \＆Enozшc， 9588876 （Logical） LOGIC HELLAS EIE，\wedge ．Kặviápn 7， 9011038 （General Automation）－MAKEAONIKA HNEKTPO－ NIKA A．E．，T $\boldsymbol{\omega} \rho \mathrm{p} \zeta$ 10， 3609751 （Mostel Rockwell，Force） －MEMOX ABEEH，Bao．Eoфiac 82，7788711－7712713 （Commodore）－MICROBYTES，$\Sigma_{\text {toupvápa 16，}} 1623497$ （Newbrain，Oric Atmos）－MICROSYSTEMS LTD，
 AAEKAPH亡 A．E．，Kŋфıoú 22 \＆Kaßä入ac， 5134311 － 5 （Altos，Corona，Franklin）－NIXDORF COMPUTER A．E．，$\Sigma u y \gamma \rho o u ̀ ~ \& ~ E k \rho a ~ 1, ~ 9585355 ~(N i x d o r f) ~-~ N T A K O \Sigma ~$ A．E．，Zailun 20， 8841411 － 13 （Brother，Panasonic，Seiko） －OLIVETTI HELLAS，Єvatrip ωv 5， 9343435 （Olivetti） －OLYMPIC DATA，Єnoéwc 59，9585586．Evaryenl－ atpiaç 70， 9567282 （IDS）－O＇MICRON OPLAN』EH EIIIXEIPH乏ERN EIIE，Boupvá̧ou 14，6444767－6444518 （Canon）－PERKIN－ELMER HELLAS，Kŋфıoiaç 58 ， 6829450 ． 6829227 （Perkin ．Elmer）－HETPOE XAPITATOE KAI £YNEPLATE EIIE，ПП．Ко入 $\omega v a k i o u$ 18，3619379， 3623614 （Tandy，Radio Shack）－PHILIPS E＾AHNIKH A．E．，Λ ． ミuyypoú 54， 9215311 （Philips）
 （Tatung \＆Basf floppies，BMC plotter，OMR Kaiser） －PRISMA，Г．Мпа̇кои 10 （Гпрокоикіо），6926936－6930424 （Timex）－PROCESSOR A．E．，Hпвірои 63 \＆Акакішv 1 － 3， 8210567 （Monroe）－RAINBOW，E入．Beviç̇̇ou 184， 9594051 （Apple）－SELCON，Іппокрárouc 35 Г λ ифá δa a， 9910950 （MonitorsHantarex）－SMM－HELLAS LTD， I ω ávvou Metaçả 16，Г λ טøáбa， 8932058 （Sanco IBEX） －STEFRAKO EIIE，Euayyeخıotpiac \＆「punápn 70， Ka入入1日غа， 9567282 － 9585586 （IDS）－SYSCOMP EIIE， Bac．Гewpyiou \＆Ba入awpitou 7， 152 32，Xa入ävб́pt， 6829882 （Systime）－EYETHMATA OPI．NATIONAL，Λ A A वخiac 34， 3224721 （NCR，Decision Mate）－TCI LTD，
 MASTER EПE，Boüえ̀ yapn 31，Пsıpaıác， 4115842 － 4173686
 6840021 （Masscomp－Grid）．TEAMAKO EIIE，＾oukia－ voú 6 A日riva，106 75， 7249215 （Barco，Trend）－TESK EIIE，Aрıотот̇̀ λ оuc 36， 8821468 （Vector Graphic Inc，Anadex， Nec）－X．©EOAOEH亡，E入．Beviç̇̇スou 16a，Ka入入ı $\theta \dot{\varepsilon} a$ ， 9598542 （Victor）－XPONAIOE A．E．，＾．इuypooù 147， 9322388 （Sharp）－UNIDATA AEBE，A $\beta \dot{\varepsilon} \rho \omega \phi \quad 9$ \＆Mà ρ－ unc． 5226292 （Sanyo，Seiko，Sentinel）．

DEALERS

－ABC SYSTEMS AND SOFTWARE A．E．，$\wedge . \Sigma u \gamma-$ ypoú 137， 9320590 （IBM PC，Olivetti M 24）．－ACE，Λ ．

Mrooyeituv 259， $6719722-5$（Digital，Cromemco）－A＠H－ NA•I•KH COMPUTERLAD EIIE，Mzooyघiwu 320， 6529699 （Apple，Epson，Anadex，Axion，Corvus）－ALI－ MOS COMPUTER SYSTEMS LTD，Movท்ৎ Петра́кп 7 Aөjiva， 7244562 （IBM，Q－PRO 4，DMDT）－ANKY $\mathbf{N N}$ EIIE，Колокотрш்vn 9， 3228173 （Apricot）• ALPHA－ NUMERIC HELLAS EIIE，$\Delta_{i} \delta a \sigma k \dot{\alpha} \lambda \omega \nu 6,6515049$（ICII， Honeywell Bull）• ANAETAEIOY ©．，Tooitoo 1， 8831198 （Atari，Commodore，Sinclair，DEX 1）－BORA COMPU TER SYSTEMS，Ay．Iwăvvou 82，Ay．Пapaokevท்，6397365， 6398984 （Commodore PC， 900 ，Stride，ATS PC／XT，Computer Logic）－BUSINESS MICROSYSTEMS EME，Hпغi pou 6， 8236444 （Sanyo）－BUSINESS SOFTWARE，Λ ． Euyypoú 102， $9024248-9232914$（Sage，Pied Piper，NCR，DM．V． Star）．BYTE COMPUTER APPLICATIONS，E λ ．Bevi そ̌̀ ou 8， 9237057 （IBM PCl）－COMPENDIUM， Niknc 28， 3244449 （Apricot，Sinclair）－COMPEX LTD， Xar＜nyiávun Mėęn 9， 7239445 （Wicat）－COMPUTER INFORMATION SYSTEMS， $\mathrm{X} \rho$ ．＾aб́d $5 \cdot 7,3227584$（IBM） －COMPUTER LINE，\triangle ．Aeponayitou 3， 9225227 （IBM PC，Wang PC）－COMPUTER MAGIC，Kw $\begin{gathered}\text { errn } 11 \text { \＆}\end{gathered}$ E μ ．Мпеvákn， 3615571 －COMPUTER METHODS， Ounjoou 60，A日n்va， 3635697 （NCR PC＇s Supermicros，minis \＆ mainframes）－CONTROL INFORMATION SY－
 CORVEL SYSTEMS TD，Акршvoc 1 \＆Yипттой 99， Паүкра́т， 7011801 －20，（Apple，IBM）－DATA MANAGEMENT，＾ewoӨ̇̇vouc 20 ，Пєıवıác， 4520222 （Apri cot，Apple）．DIGITAL ELECTRONICS，A 1μ ．Beäkn 56 5728859 （Sinclair）－ECONOMIC DATA A．E．，Пavern oтпиiou 57， 3245360 （Casio，IBM）－ECS AE，Ephoù \＆ Фwkiwuoc 8， 3225426 （IBM）－EPOGRAF EIIE，Avбрıa veiou 21，6471427（Olivetti）－IГM COMPUTER DATA CORP，Mzooysiwv 2， 7778493 － 5 （IBM PC，Epson，Corvus SCS，Brother，DS 180）－INFOPLAN S．A．，Σ tabiou 10 3233711 （IBM）－INFORMER S．A．，E入．Beviç̇̉ou 59 Ka $\lambda_{1} \theta \dot{\varepsilon} \alpha, 9594933$（IBM，Wang）－INTERDATA A．E．，Δ Apsonayitou 7，9237179（CMC，Digital）－KAPATIANNH亡 A．E．，Ounjoou 8， 3230303 （Hewlett Packard）－KOPO－ HAAN，Kŋ申ıoiac 196， 6472304 （Casio）－LINEA hellas ente，Meooyeiwu 30,7752638 （Olivetti）－LO－ GICA COMP SYSTEMS，Нрїwu По入．20－22，Пєıрaıă， 4129235 － 4120015 （Televideo）－MAGNET ELECTRO－ NIC SYSTEMS，Λ ．Kпфıбiac 263， 8086508 （Apple）• MICRO，＇O $\theta \omega \omega \circ c 99$, Knфıod́， 8085587 （Apricot）－MICRO－ BRAIN A．E．，Σ toupuápa 45， 3607733 （Commodore，Spec trum + ，Apple compatibles）－MICROBYTES，Σ toupuà pa 16， 3623497 （Wang）－MICRONICA，\wedge ． ¿uypoou 350 9412510 （IBM PC）－MICROPOLIS，乏toupuápa 9 ， 3633357 （Apricot）－MICRO＇S LEADER，Marnoiwv 181 8644406 （Casio）－MICRO WORLD，$\Sigma_{\text {ta }}$（iou 10 \＆Orn่ pou， 3234743 （IBM，CDC，Wang，Lynx）－MKT，Meooyeiwu 259， 6710482 （MAI／Basic Four，Olivetti，Kodak BIS）－ MULTICOMPUTERS，Kобрıүктய்voc 10,8225197 （Apricot） －ORANGE COMPUTERS，Кобріүктш்иос 10,8225197 （Apricot）－PANSYSTEMS，ミuyypoú 314，Ka入入i $\theta \dot{\varepsilon} \alpha$, 9589026， 9565250 （Apple，IBM，Xerox，Wang）－PC ŠYSTEMS Ltd．，Kou （IBM）－PERSONAL COMPUTER SYSTEMS S．A．， Mavpoкорб́ȧou 11 Пॄıрवıác， 4181259 （IBM）－ПOM，Λ Euyypoú 69， 9234016 （Olivetti）－SDC EnE，＇Aкрwvoc 1 \＆ Yuпtroú， 7520745 （Olivetti）－SOFRAGEM HELLAS EnIE， Iuyypou̇ 69，9230304， 9223350,9239241 （Apple，Wang， Control Data Greece）－TECHNICOMER EIIE，Пl λ ．Π

 panác（Olivetti）－Ф．£TA 4111001 （Addler，Spectravideo）－TEXNIKH EMHOPI－ KH A．E．，Λ. A $\mu \mathrm{a}$ 入iac 44， 3247718 （Philips）

COMPUTER SHOPS

－ABC SHOP，\wedge ． uyypoũ 137， 9320590 － 9323715.
 CLUB，Hiغipou 6， 8236444 －ASPECO，ミtoupvápa 44， 5229554－5225667 • ATHENS COMPUTER CENTRE， Σ ₹ $\lambda \omega \mu$ ои́ 25，3609217．－ATKO BOUTIQUE，Meoo yeiwu 74，7783659－7785950－BIT COMPUTER SHOP Xaïนavtá 34 ，Xàảvбןı， 6821424 －BORA COMPUTER SYSTEMS，Ay．Iwàvvou 82，Ay．Пapaokevウ்，63973365，

6398984 －BLA－BLA ELECTRONICS，Taivaסoc 42， 2525139 －THE BRAIN，L Фwk 125,2928005 －CAT COMPUTERS，Imпокра́tovec 57， 3643044 －CITY COMPUTERS，Nik．Пגаoтino 59 Alyä $\ell \in \omega, 5908146$ －COMPENDIUM，Nікпূ 28, Eivtarua， 3244449,3221248 ， 3226931 －COMPUTER CLUB，Eин．Mтеvákn \＆
 140，9592623－4－COMPUTER MAGIC，K $\omega \lambda$ ह̇тT 11 \＆ Eu．Mnevákn， 3615571 －COMPUTER MARKET $\sum 0 \lambda \omega$ मoù 26，3611805，EToupvápa 21，3608535－COMPUTER PARK，Akaб́nuiac \＆「evabiou 8， 3620474 －COMPU－ TER TRADE CENTRE LTD，Meooyeiwv \＆Apкабiac 29, 7775424 －COMPUTING CENTER，Пivঠápou 25 \＆ Tбак⿺辶入̀ $\omega \phi, 3631361$－COSMIC COMPUTERWARE， Hпкipou 3，Моиoहio， 8215377 －$\triangle E A T A$ COMPUTER
 SHOP，Zĭvuvicc \＆Nikn＠ópou 1，Ouóvola 5240986 －EDPC MHXANOTPAФIKO KENTPO EAEYEI－ NOE ETIE，$\triangle . \Sigma$ кор $\sigma \dot{\alpha} 34,5542058$－FUTURE COMPU－ TERS AND THINGS， 1. Maßiin 17 ，K．Пatiola 2013933 －home Computers，Пaveniotnuiou 41 （ETOA NIKONOYOH），3222773－3225589）－ITM COMPUTER DATA CORP．，Megoveiuv 2， $7778493-5$－INFOPLAN， Etabiou 10， 3233711 －KENTPO EФAPMOTRN H／Y «TN $\Omega \mathbf{\Sigma H}$ »，Пlaoiwvoc 98 ，Měyapa， 0296 －29656－MAG－ NET COMPUTERS，Kn申юㅁac 263， 8086508 －ME－ moxcraft ene，Mixà̀akoпoù̀ou \＆Өétiooc 10 ． 723995 －MHXANOAOTIETIKH－ETAMATAKOE
 MICRO，Oөwvoc 99,808558 －MICRO－TEC，Γ＇Σ_{ε} ． птенß̧iov 50，Aөtiva 104 33， 8836611 －MICRO－TEC KHథIEIAE，Knфाoiac 228， 14562,8014168 －MICRO－ BRAIN，Etovpvápa 45， 3607733 －MICROBYTES， Etoupuápa 16， 3623497 －MICROLAND，Aえkißiábou 87, 4118736，Пeparác－miCROPOLIS，Etoupvápa 9. 3633357 －MICROSTEP，Apanäкn 56 ，Ka入入入өछ̇o， 9563622 －microworld，Etabiou 10 \＆Ounipou， 3234743 －MULTI COMPUTERS，Inпокра́rouc $52.54,3607770$ －ORANGE COMPUTERS，Kобрүүктїvoc 10,8225197 －PAN SYSTEMS， 1 EuyYpoù 314316， 9589026 －HEIPA－I－KO KENTPO VIDEO－COMPUTER， Код̀окотршіч 108，4131847－4136513－PLOT 1，Аккб́n
 Eoùtávn 16， 3640541 －PLOT 2，Kouvtouphḯtou 94
反pac 126 －THE COMPUTER SHOP，$\sum_{\text {tovpvápa } 47,}$ 3603594 －THE COMPUTER CLUB SHOP，£ou入ra̛un 19，3637442－TECHNOLAND，A入kißicióou 113，Пछ paüç， 4131372 －YחONOTIETH乏，＾．1．Meta̧ả 32A，「入uф̣áa， 8955644

ANA』』EIMA

－AANKA』 A．E．，Kamoбıөтрiou 5，A入ı μ с， 9839720

 ПАNATI®TOY \＆EIA，Пamappnyonoúñov 40， 6424400 （Mnxavoүрафıко́ харті）－Ф．BOYNATइA亡 \＆YIOI
 －CONTROL DATA INC．，\wedge ． ¿uyypoú 194， 9510811 （Storage Master）－CPS E．I．E．，$\Sigma u \not y y p o u ́ ~ 39, ~ 117 ~ 43 ~$

 pou ．Фwkaiac， 4819815 （Dysan）－DELTA SOUND，B Aб́ı̇Eoб́＇Oגyac 6，Dáфun 172 37， 9755409 ． 9708642

 Centech）－ZתPZOE \＆EIA O．E．，Av日iuou $\Gamma a\langle h ่ ~ 9$,
 18－20， 8230011 （бібко，бıбке̇те¢，Isotimpex）－KODAK

 EIIE，Meooysiwu 30， 7752638 （Armor）－3M HELLAS
 －MEKANOTEKNIKA，$\triangle \eta \mu \eta$ тракопой $о \cup 78,9236789$

NIA乏）－MKT，Meooykiwu 259， 6710482 （Dennison，MCT Elephant）－ПРОМНӨЕYミ EПIE，\triangle пиптракопой入ои 64
 PELICAN，бஎбк்̇є FUJI）－PADIO KATOYMAE Пряछฺเ่̇ไouc 15－19，3250412－16（Connectors）－TECHNI－
 （бıбке̇те，Athana，uehavotaiviec Geha，opyav．ypaфriou Lamberz）－TPIAE EIIE，＾．Euyyoui 19， 9222445 （ \triangle וбке̇теc Datalife，Verbatim taıviec，$\mu \varepsilon \lambda$ avotaıviec，ठiokoı） －TYПOMHXANOLPAФIKH A．E．，\wedge ．Bàpnc－Kopw niou 19400 Kopwri， 6622112 （Mnxavoүрафікá èvtuna） －VIKELIS ENTERPRISES，Λ ．Euyypoú 314－316
 періфєрєяакш்้）．

SOFTWARE HOUSES

－ABC PROFESSIONAL SERVICES A．E．，\wedge ．इUY Ypou 137， 9323715 （MAINFRAMES，MINIS）－ABC INFORMATION TECHNOLOGY A．E．，\uparrow ． ¿uyYpoú 137, 9352335 （Проүро́дциата үı MICROS）－ABACUS A．E．， Фànjipou 52，9231622－ALIMOS COMPUTER SERVI－ CES Ltd，Hпغipou 4，＇A $\lambda 1 \mu$ ос 17456,9920416 －BYTES， Hpüwv Под̀өтеגveiou 20－22，Пeıpaı́ç，4129235－ 4120015 －BUSINESS SOFTWARE，\wedge^{\prime} ． Uuypoú 102， 9024248 9232914 －CBS Ltd Computer Business Systems， Zuvapà 10，6421254－6420998－COMPACK，Apıototė λ ouc 36， 8821468 －COMPUTER LOGIC A．E．，Λ Euyypoú 212， 9525207.8 －COMPUTER METHODS， Opñpou 60，A 0 ñva， 3635697 －COMPUTER TECH－ NICS，Пáфou 15，Пamáyou， 6528339 －DATASOFT LTD．，\wedge ．Køøıiaç 124， 6911381 －DATAJUST，Katepi unc 15 \＆$\Sigma \pi$ ．Пăтon，3469927，Aө்̇va－DATA MANA－ GEMENT，＾eoôívouc 20，4517786－4520222－DEATA ABEII，इTp．इuvб́equou 24 A
 －ECONOMIC DATA A．E．，Паvenוoтnuiou $57,2 \circ \varsigma \rho$ ．
 3245360／1－3245263－ERGOSOFT EIIE，Meooygiwu 83， 7715433 － 7715458 －HNEKTPONIKO KENTPO OI－
 คá 3，3635117－3627563－IIM COMPUTER DATA CORP，Mzooygiwv 2， $7778493-5$－INFOKRAFT EIIE， \wedge A Anvüv 104，5143088－5143089－INFOLOGIC EIIE， Díótou 3，A日்̇ua 106 80， 3165897 －INFOPLAN S．A．， Etaठ́iou 10,3233711 －INFOSYSTEMS，Movñc Пعтрákn 8，A日ṅva 115 21； 7222177 － 7227234 －INFOTEC COMPUTER SYSTEMS，Axapvïv 10,5233128 －LH－ SOFTWARE，Σ toupuápa 23,3613781 －MHXANOAO－ ГIETIKH－ミTAMATAKO乏 EПE，Фіへ̆арॄ̇то 137
 16， 3643496 －MICRO＇S LEADER，Пatnoiwv 181， 8644406 －MKT，Méoyघíuv 259，Nzo $\Psi_{\text {Uxiкó }} 154$ 51， 6710482 －MNEMONICA，ミuүyроú 377，П．Фа́入nро， 9414073 －ORGANODATA E．П．E．，Ounpou 9，N． $\Psi_{\text {ихІко்，} 67217889 \text {－ПIPORPAMMATA MIKPO－Y• }}^{\text {－}}$ ПOAOГIETRN EIE，Λ ．А А 1 तiac 44,3244718 －PRO－ TIME COMPUTER CENTER S．A．，\cap ．इuyypoũ 253， 9426513 －QUANTUM DATA HELLAS，Eupibiknc 2 7212597 （Custom ．made software yia IBM \＆ovußaroúc） －RAM II CENTER，Im $m o к \rho a ́ t o u c ~ 2 ~ \& ~ A к а б ̋ и і а с, ~$ 3645959 －ROM ЧHФIAKH I．MAYPOIIANNO－ ПOY 7657391 －SCAN，Mعooүeiwv 215， 6718609 －SINGU－ LAR，＾ouǐnc Pigukoù 64，Пüpyoc Aөnvüv Aө́nva 11523,
 8932058 －SOFRAGEM HELLAS EHE，इuyypoũ 69, 9230304－9223350－9339421－SYSCO，\triangle aßákn 11，П．廿uxikó， 6524929 － 6749522 －THE BRAIN，I．Фwкá 125 ，
 9349907

OEEEAAONIKH ANTITIPOERIIEE

BURROUGHS，A θ ．इouı̈tn 21， 845224 ． 845202 （Burroughs）－CYCLOS MICRO SYSTEMS，AYyE入̀ kn 39， 279574 （Tandy）－DATAPAC， इa α quivoc 2,544057 （Plexus）－DATA SYSTEMS，Mnтоопо் $\overline{\text { E }}$ c 26， 264726 （Eagle）－DELTA COMPUTER SYSTEMS，Поえut६
xueiou 17，538803－538113（Televideo，Datasouth）－EAKAT AE，B．Гewpyiou 7， 831302 （Atari）－INFOQUEST BOPEIOY ENAADOE，Avayevvíozwç 2 \＆KaZautて̛ákn 523044 － 538293 （Tulip，Hawk，Quantex，Star，Xebec） －INFOTEC N．G．，Σ àдauivoc 5,513050 （Future，Alpha Micro）－MEMOX ABEEH，Bag．Hpak λ हiou 24， 229595 （Commodore）－NIXDORF COMPUTER AE，A λ ıкар－
 －ПOYAIADHE \＆EIA，Apıototè̀ Instruments）－RANX XEROX，＾．इoథoú 2， 511693 （Eiypa XT）－SYSTEM EIIE，इahapivac 2， 544119 （Comart）

DEALERS

 236288 （Cromemco，Sanco，Ibex，Epson，Norand）－BAUD O．E．，$\Delta w \delta$ हkavinoou 7， 528334 （BBC，Sord，Electron，Sage， honeywell）－CACTUS EIIE，Ay．Eọiac 4，（Xerox）

CONTROLA，N．Kgoouoüえn 1， 424845 ． 428367 （Apricot，BBC，Sinclair，Commodore）－COMPUTER TEAM，Σ àauivoc 7 \＆Kaparảoov， $535312 \cdot 544844$（IBM）

COMPUTERWORLD，Tøıиıбкі 11,227323 （Ericsson， PC，Facit，Computer Modular）－Г．OIKONOMIDHE EIIE，Фì̀kric Etaipiac 13， 237903 （Apricot）－DATA TEAM，Хatそ̄б́ákn 11， 413102 － 421986 （Xavier，Point 4， Xerox）－\triangle YNAMOPФIKH，Мптропо்えешс 44， 271193 （Apple）－EN．MH AE，Eyvariaç 30， 544837 （Casio） －EYAITEAIDHE，Eyvariac 65， 270054 （Newbrain， Amstrad，Commodore）－GENERAL SYSTEMS，Пpo－ un $\begin{aligned} & \text { Éwc 1，} 1,318242 \text {（Vector，Sinclair，Epson，Amstrad，IBM）}\end{aligned}$ －HELLAS ELECTRONICS，$\Delta \omega \delta$ ekaviooou 21,540386 （Gigatronics）－MAKEAONIA SOFT EIIE，Фрàүкшv $6.8,530115$（MAI／Basic Four，Casio，Wang）－MAKEAO－ NIKA H＾EKTPONIKA EIIE，ミuyYonoüえ̀ou 16，Xapıえ̀àou， 306800 － 360801 （Rockwell－Force）－METPOIIOAIE－ ПАНРОФОРІКН Е．П．Е．，Праоака்кп 11， 225815 （Apple， Corvus，Rana）－MHXANONOTIETIKH，Toוцıбкn่ 27， 267922 （Hewllet－Packard，Control Data）－MICRO ELECTRONICS EIE，Av $\theta \dot{\epsilon} \omega \mathrm{uv}$ 36， 428714 （Sage，Pied Piper，Commodore）－MICOM，इà auivoc 2． 545967 （Currah）－MPS，Подutexveiou 47， 540246 － 536968 （Apricot）－NORTH DATA COMPUTER，$\Phi_{\text {páyk } \omega \omega \text { 1，}}$ 520410 （IBM PC）－PC SYSTEMS Ltd．，Apıototė̀ouc 5 \＆Tбіиіокі่， 276529 （IBM）－SIGMA COMPUTERS，ПП．

TEXNODIAETAEH，Kaußouviwu 8 \＆Γ ．Dè λ iou 8， 223966 （Apricot，Sanyo，हktur．Star）－TIT COMPUTER－ LAND，Apictèخouc 26， 283990 （Apple）

COMPUTER SHOPS

CHIP，Мптропо́ ε всс 25，221126－23288－CYCLOS MICRO SYSTEMS，AYYE
 2769090 －MHXANONOLIETIKH，Tбெиıокn่ 27,267992 MICOM，इa auivos 2， 545967 －MICROPER－ SONAL COMPUTERS，Epuoú 2， 534258 －MPS， По̀̀teरuziou 47， 540246 － 536968 －THESSALONIKI COMPUTER CENTRE，Δ ．Гoúvapn 60 \＆Apuevonoù λ ou 214228 －THESSALONIKI COMPUTER CENTRE II，$\Delta \omega$ бहkavioou 21,538712 －THESSALONIKI COM－ PUTER CENTRE III，$\Delta \omega \delta \varepsilon к a v j o o v ~ 21,540386 ~-~ T E-~$ XNOAIAETAEH，Kaußouviwu 8 \＆1．$\Delta \varepsilon \lambda \lambda i o u ~ 8, ~ 223966$

SOFTWARE HOUSES

－BAUD O．E．，$\Delta \omega \delta \varepsilon \kappa a v n ̃ o o u ~ 7, ~ 528334 ~(S a g e) ~-~ . ~$ COMPUADS，$\Delta \omega \delta$ ekavioou 21，540386－COMPU． TER LIFE，$\Delta \omega \delta \varepsilon k a v j \dot{\sigma} o u ~ 7,537853$－COMPUTER TECHNICS，Makévそ̧ Kivyk 14， 283601 －METPOПO－ Мİ ПАНРОФОРІКН А．E．，Праоакákn 11， 225815 －MO SOFT，Ayiac Σ Iopiaç 46， 280300 －OR－CO， $\Delta \omega$ ह́ekaviooou 10ß， 541247 －SINGULAR，$\Phi_{\text {рáyk }}$ ． 6 520776 －UNISOFT O．E．，B．Hрак λ हiou 24， 285895 －YПONOTIETIKH O．E．，Подuteरveiou 17， 538113

ANANSEIMA

－A玉IOE，Tępua O6oú Xàußoupyغiou，768177－760932
 （Control Data）－COMPUTER WORLD，Tоıиккท่ 11 54624－ 260239 － 227323 （ava $\lambda \dot{\omega} \sigma \mu \mathrm{u} \mathrm{d}+\mathrm{b}$ ）－CYCLOS
 noynios \＆EIA O．E．，Avtiyoviðív 11， 531333 （Pelican， Aદioc）－SYSTEM EIIE，¿à̀auivoc 2， 644119 （Taiviȩ， бıбкёtec，סioroı Comart）

AMNH EへへA \triangle A

ATPINIO

－AnIOPIeMOE WEST，П．Δ пииократіас 1． 28394 （Cromemco，Sancoibex，Epson，Norand）－DATALOGIC A．MIAPDAKHE，Toà 8 dopn 42 （MAI Basic Four，Zilog，
 П．Пavayonoǜou Evvtpıßävi． 25243 （Apple，Corvus，Epson）

ANEEANAPOYIONH

－STUDIO 2000 （IIANITEOYAH－KAPAIIANNA－ KH），B．Г ewpyiou 280.23460 （Sinclair \＆ò $\lambda \mathrm{a}$ ta home micros）

APTOE

－SYTEC，Kopañ 2． 21561 （Commodore）

APTA

－COMPUTER DATA，Kanpávou 5．7． 24892 （APRI－ COT）－SAKENET E．П．E．，Bao．Húpou 21． 21250 （Apricot）

BEPOIA

 －MHXANOTPAФH乏H BEPOIA乏 OE，Kevtpikic 269，21841，Bépoıa－ПANAГI』TIDHE，Вıкغ̇え入 1， 22183 （Micro катá парауүедia）

BONOE

－ГENIKH MHXANOTPAФIKH－E．EEФEPEIA－
 38221 （Apple，Sinclair，Amstrad，Commodore）－COM－ PUTER ARTS，\sum nupión 62， 25051 － 23362 （Apple， C．ITOH，TI／99 4A）－ENTERCOM，Avtwvoпoü入ou \＆ Kwuatautá 135， 95214 （Apricot）－MHXANOTPAФH－ ミH BOAOY，Kwvaravtá 124 \＆K．Kaptà $\eta, 38710$（Sirius， Aviette，Unitron 2200，Bit 90 Spectrum，Oric，Atmos）
－MHXANOTPAФIKH COMPUTER SHOP，ГK $\quad \alpha-$ Báun 98， 38362 － 45394 －MICRO－TEC，Kwuotavtá 140 ， 38221 －（0421） 28402 －MICROPOLIS，Av θ ipou 「aそn 153，
 －MHIPMIIOE Г．，Epuoú 170，22886－37257（Commo－ dore）－SYSTEM，Kwuotavtá 140－142， 28402 （NCR）

$\triangle P A M A$

－$\triangle P A M A$ COMPUTER CENTRE，K．Пàaıòȯyou 16， 22225 （Sinclair，Commodore，Dragon，Spectravideo）

HPAKAEIO

－C．P．M．，Kuষwviac 4,286126 （Oric）－INFOKRETA
 Kpintnc（Apple Sinclair）－INFOSHOP， 25 nc Auyouiorou 39， 284463 （Apple，Texas，Brother，Atari，Newbrain，Sinclair， Sanyo，Seiko）－KAPBOYNAKHE TEOYKATO乏 BAEINEIOY O．E．（HAEKTPONIKH KPHTHE），Ma－ poyẅopy 3,235333 （Casio）• KPHTIKO KENTPO YIIO－ AOTIETRN，Пג．Kopvápou 45， 713 06，288380 280640 241396 （Plexus）－MECHANOTECHNIKI，Zwypà甲ou 3，（081） 242793 （IBM）－MICROLOG A．TEATKA－ PAKHE O．E．，П λ ．E λ ．Bevľ̌̇ λ ou 21， 243152 （Commodore） －ПАHPOФОРIKH KPHTH乏 E．II．E．，Toakion 11，
 Xoptaociüv 24， 280023 （Apricot）－TCS，A 1 илाहрт 7. 284788 （software house）－YПOONO IETIKH KPHTHE， Катеха́кп 17， 285553 （Apricot）－XATZAKH亡，£ μ úpunの 25， 285739 （SGS－ATES Training System）．

IRANNINA

－PROGRAMM EIIE，X．Tpikoúnn 26， 343001 （Apple，

CDC，Pers．Computer，періфєреıака́）

KABAへA

－CAVALA COMPUTER CENTER，Г $\alpha \lambda . \Delta \eta \mu о \kappa \rho \square$ riac 43， 834258 （Sinclair）－NEA COMPUTERLAND， Eス．Bevitèhou 36， 837550 （Amstrad，Commodore，Sinclair） －ПАНРОФОРІКН，Aiavtoc 1， 222831 （TDI－PINNA CLE，IBM，Apricot，BBC，Electron，Commodore－64，Amstrad， New Brain，Oric－Atmos，Sinclair，Atari，Epson Drives）

KA』AMATA

 （Apple，Epson，Axion，Anadex，Corvus）－NTEMO COMPUTER CENTER，Мпоu入 oúkou 54， 91693 －TE－ LEDATA COMPUTER CENTER，Фápwv 208， 82479 22254

KAPAITEA

－MICRON hellas，Hpiswu Пòutexveiou 25， 29127 21291 （Mnxavopyàvwon）

KAETOPIA

－COMPUTRON，Θ ．Колокотрїи 4,22715 －MI－ CRO YHONOHIETIKH O．E．，M．A $\lambda \varepsilon \xi \dot{q} \dot{v} \delta \rho o u$ 15， 25161 （Goupil，Star，Mannesmann Tally，Epson，Sinclair）－VI－ DEO CLUB，Kодокотрїиn 4， 23135 （Atari，Commodore． Sinclair）

KATEPINH

－COMPUTER CENTER，Ay．Naúpaç 16， 28623 （Commodore，Sinclair）－ELECTRONICS COMPU
 Mapueviwuos 8 （Sinclair，Oric，T199／4A，Commodore，Casio， IBM PC）

KEPKYPA

－CORFU VIDEO CENTER，Kanoб́वाрiou 3,36076 （Oric）－HELLENIC NEW TECHNOLOGY LTD Evaryenıotpiac 1， 42584 － 41460 （Roland DG Plotters TDS Digitisers，Auto Cad，SMART，Software system）－IONIAN COMPUTERS，Euayyenıorpiac 1，42584－ 41460 （Apricot， Amstrad，Sinclair，Roland，TDS，Auto CAD，Epson，Star）

KEФAへМONIA

－KENTPO HNEKTPONIK Ω N E $\Phi A P M O T \Omega N, B \varepsilon \rho$ Yштin 37，0671－22063

KOZANH

－COMPUTER WORLD，Képroou（Ť̌óvoov）15， 22381 （Dragon）－ $\boldsymbol{\Delta O Y F A N H}$ E．，Bag．Гewpyiou 9， 34371 （Apple）

KOMOTHNH

－SKK COMPUTER SYSTEMS，Mapwveiaç 22,21690 （Spectravideo－Casio）

KOPINOOE

－MHXANOPTAN $\Omega E H$ HENOIONNHEOY EIEE， Ay．Пaǜhou 28， 21020 －MICROPOLIS，Єqotókn 70 ，

$\mathbf{K} \boldsymbol{\Omega} \mathbf{\Sigma}$

 періфєрєІака́，проүра́циата）．

AAMIA

－KתミTAPENOE K．，Колокотрш̈vn 32， 32096 （Philips） －NTEA＾AE，$\Lambda \omega v$ vioou 21,20795 （Commodore）－חIA－ HANAETAEIOY X．，Kолокотршіun 32， 32996 （Sinclair， Wang）－TEXNOHNEKTPIKH，Computer shop Aug－入iaç 6， 31858 （Sinclair，Epson）

\APIEA

－CHERRY COMPUTERS，M．A $\lambda \varepsilon \xi \dot{q} v \delta \rho o u$ \＆Паүкdं خov 12， 223702 －A＠AN．MIIETEIOE，Пanaoraüpou 3，

257267 （Apple）－GIS，KapaӨ̇ivou 37，ミkouфd்， 223897 （Пuөia PC，Пǹyaooc PC）－STEP，N．Mavónìapá 45， 233250 （Sinclair，Oric，TI 99／4A，Commodore，Casio，IBM PC） －TEXNIKH MIKPO•Y－HONOTIZT Ω N，Пanavagra－ siou 70， 259221

MYTINHNH

－KYNIKAHE，П．Boorờn 10， 27487 （Sinclair）

NAOYEA

－EPTO Δ OMH A．E．，$\Sigma 0 \lambda \omega \mu \circ \dot{1} 11$ ，（0332） 28187 （Appel）

EANOH

 17． 20256 （Amstrad）－ПAPAEXOE－KEФAヘAE， Xarそnotavipou 2， 26920 （Spectrum，Commodore，Amstrad kaı о̀ λ а тa micros）

IATPA

－COMPUTER LINE，Maıそ̈uvoc 94，ГIス．Гewpyiou， 270239 （IBM PC，Compaq，Quadram，Wang PC）－COM－ PUTER PRACTICA EnE，Maǐ $\omega v o c$ c 47β \＆Zaîun， 276691 （IBM PC dealers，Commodore，Amstrad，Sinclair，Atari，Epson， Star，k．ả．）－IMME A．E．，Ay．Avópeou 52， 225798 （SOFTWARE HOUSE）－MICROCOMPUTERS，Mar－ ఢ̣ivoc 20－22， 271842 （Apple）－MICRO－TEC，Pinya Фepaiou 152，（061） 325515 －TEXNOXPONOE COM PUTER O．E．，Пarpéwc 66－68， 274025 （Lynx，Oric，Star，Sanyo， Sinclair，Zenith，Seicosha，VIÇ－20，Commodore，Apricot）

IIYPTOE

－OLYMPIC DATA，Пarpüv 1， 29808 （IDS）

POAOE

 34045 （IBM）－INFORMER S．A．，Bao．ミopiaç 25，（0241） 26707 （IBM）－MICROPOLIS，Mıк．Петріб̈n 20， 32340
－RODOS COMPUTER CENTER，＾عuधoou 8．10， 32405 （ \sum хعбо́v д̀ да та micros）

EEPPEE

－SERRES COMPUTER CENTER，П Хрוотофо́pou 4， （ Σ xeбóo ó̀a ta micros）－ГРHГ．T¿AKIPDAH乏 \＆

EIAPTH

－COMPUTERS \＆VIDEO，Aynoindáou 46， 23515 （Osborn，Epson）

EYPOE

－SYROS COMPUTER AND VIDEO CENTER， Aubpou 16， 25536 （Amstrad，Commodore，Spectrum）

XANKIAA

－TPIANTAФYANOY COMPUTERS AND SERVI－

XANIA

－KYBEPNHTIKH E．E．，Ku $\delta \omega v i a c ~ 32 \cdot 34,50450 \cdot 73100$ （Mai，Basic Four）－MEMO COMPUTERS，T（аvaкãkn 19，Xaviá

xioz

－CHIOS COMPUTER CENTER，「 λ аúкоu 4,26188 （Home micros，Apple Dealers）

KYIIPOE

－EXECUTIVE COMPUTERS Ltd．，Пivб́ápov $3, T . \Theta$ 9072 ＾euk ω oia，0035721／55443（Apricot，Datalogic）－INM Computer Services \＆Software Burau Litd．，I．O．BOX 1035 Apx．Makapiou III 119 ＾eиعoóc， $051-51530$－WORD PROCESSING CENTER Ltd，Δ ．$\sum_{\varepsilon} \beta \varepsilon \rho \eta 28$ ，＾عuк \quad oia，
 0035721／53232（IBM）

Tov عாóuzvo بŋ̇va

OPIZONTE

 ото software review tou غ̇поццघvou teúxouc.

OI... MELANOI

BULL MICRAL 30

Trimitit fix
 Hecul kapta IYn

 парацıкрท் каӨ৩отє́рŋоп．
ONOMATEIISNYMO
$\triangle I E Y \Theta Y N \Sigma H$
T．K． \qquad THAEФ』NO
EПAГГEへMA
H £YN $\triangle P O M H$ N＇APXIZEI AПO TO TEYXOE No

PMEL KAPTA EYNDPOMHE ANAINQETRN

 бтغ́pŋoŋ．
ONOMATEIIRNYNO
DIEYEYNEH
T．K．
THへEФ』NO
EПAГГEへMA
H 乏YN $\triangle P O M H$ N＇APXIZEI AIO TO TEYXO乏 No．

12345678910111213141516171819 202122232425262728293031323334 353637383940.414243444546474849 5051.52535455565758596061626364 656667686970717273747576777879 808182838485868788899091929394 808182838485868788899091929394
95969799100101102103104105106 9596979899100101102103104105106
107108109110111112113114115116 $\begin{array}{llll}117 & 118 & 119 & 120 \\ 121 & 122 & 123124 & 125 \\ 126\end{array}$

 137138139140141142143144145145 | 147 | 148 | | |
| :--- | :--- | :--- | :--- |
| 149 | 150 | 151 | 152 |
| 153 | 154 | 155 | 156 | 157158159160161162163164165166 $\begin{array}{lllll}167 & 168 & 169 & 170 & 171 \\ 172 & 173 & 174 & 175 & 176\end{array}$

 197198199200

IIA TO ПEPIOAIKO
AP．TEYXOYE
EחINYMO
ONOMA
EIIATIEAMA \qquad THA．：
DIEYOYNEH \qquad T．K．
EXת YHONOTIETH

－confurajes

ONOMATEIIRNYMO $\triangle I E Y O Y N \Sigma H$
\qquad

THA．： \qquad KOETOE ATIENIAE
APIOMOE AEZERN：
APIOM．TAXY $\triangle P$ ．EIITATHE
HM／NIA：

\square Emixeipnon
\square Iסเய்Tn¢

TMHMA $\Sigma Y N \triangle P O M H T \Omega N$
A＠HNA：इO＾תMOY KAI MHOTAEH 9 THA． 3644 685，6－3601 761
ӨEE／NIKH：XA＾KEתN 29 THへ． 282663

TMHMA EYN $\triangle P O M H T \Omega N$
AOHNA：£O＾תMOY KAI MПOTA乏H 9 THA． 3644 685，6－3601 761
©EE／NIKH：XANKERN 29 THへ． 282663

COחPUPZEy

TMHMA EEYMHPETHEHE ANAГN $\Omega \Sigma T \Omega N$
AOHNA：£OASMOY KAI MПOTA乏H 9 THヘ．3644 685，6－3601761
©EE／NIKH：XANKE $2 \mathbf{N} 29$ TH＾． 282663

TMHMA EEYПHPETHEHE ANATN $\Omega \Sigma T \Omega N$

information

(2x)dyN $\sqrt[x]{\sqrt{x} \sqrt{x}}$

[UVETTEUEI相的[.]. Tou E.I.I.

Портрайи
 PERKIITHILEER
digitized by greekrcm.gr

غ̇va $\varepsilon \lambda \lambda \eta \nu \iota \kappa o ̋ ~ \pi \alpha \kappa \check{\tau o ~} \sigma \chi \varepsilon \delta เ \alpha \sigma \mu \varepsilon ̇ v o ~ \sigma \grave{j} \mu \varphi \omega v \alpha$

АЕITOYPГEI:

- IE MEMONתMENA PERSONAL COMPUTERS
- Σ E NETWORK (Пo $\lambda \lambda \dot{a}$ Personal Computers $\sigma v \mathbf{v} \delta \delta \delta \mu \grave{v v a} \mu \varepsilon \tau a \xi ̧ \dot{u}$ тous)

ПEPIEXEI:

FRONT OFFICE

- KPATHEEIL
- KINHLH ПE
- NIGHT AUDIT
- BANQUETS
- M.I.S.
- IETOPIKO APXEIO ПЕ \wedge ATתN

BACK OFFICE

- ГЕNIKH Λ OГİTIKH
- MIL@OLOEIÁ
- АПОӨНКН
- इYェTHMA E KAI \triangle IOIKHTIK Ω N ПАНРОФОРІ Ω

[^0]:

[^1]: Oגa ĚYıvav tóoo そaبviká． Tá tóбо по入útıиа otorxeia каі плnрочорієऽ пой $\varepsilon i x \varepsilon$ otóv úno入oyıotn tou，xá\＆nkav Kai étor n̉p $\partial \varepsilon$ ń катабт $\rho \circ \varphi$ n．＇H סanavnpń

 BéBaıa，eivaı μ ıá őxı đuvnðıఠuévn，
 סou入eıá tou，＂Etơ tńv غ́nouévn popá noú 8á

 A
 عivaı oi ákpıBȯtєрєऽ，oã̧ пробчє́pouv tn่v

 toũ úno入oүıø๓ń oas．
 H XIDEX，ó kataokevaotn̄ $\mu \varepsilon$ ti̧ ưษn λ és

[^2]:

 multiuser micro．
 SYSCOMP．

